A Novel Hybrid Unet-RBF and CNN-RBF Algorithm for Autism Spectrum Disorder Classification

Authors

  • Lim Huey Chern Universiti Malaysia Sarawak
  • Abdulrazak Yahya Saleh Al-Hababi Universiti Malaysia Sarawak

DOI:

https://doi.org/10.33736/jcshd.6778.2024

Keywords:

autism spectrum disorder, convolutional neural network, deep learning, radial basis function, U-Net

Abstract

The 2021 CDC report indicates that Autism Spectrum Disorder affects 1 in 44 children, necessitating advanced classification methods. This article proposes a hybrid deep learning approach for ASD classification, merging U-net and Radial Basis Functions for medical image segmentation and integrating Convolutional Neural Network with RBF for ASD classification. Achieving 94.79% accuracy surpasses previous studies, highlighting deep learning's potential in neuroscience. Future research should explore diverse algorithms, validating them across varied datasets with different hyperparameters to enhance ASD classification efficiency.

References

Al-Fraihat, D., Sharrab, Y., Alzyoud, F., Qahmash, A., Tarawneh, M., & Maaita, A. (2024). Speech Recognition Utilizing Deep Learning: A Systematic Review of the Latest Developments. Human-centric Computing and Information Sciences, 14, Article 15. https://doi.org/10.22967/HCIS.2024.14.015

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ... & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 1-74. https://doi.org/10.1186/s40537-021-00444-8

Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical image analysis using convolutional neural networks: A review. Journal of Medical Systems, 42, 1-13. https://doi.org/10.1007/s10916-018-1088-1

Assimopoulos, S., Beauchamp, A., & Lerch, J. P. (2023). Preclinical Models of Autism Spectrum Disorder. In Neurodevelopmental Pediatrics: Genetic and Environmental Influences (pp. 309-325). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-20792-1_19

Azzeh, M., Elsheikh, Y., Nassif, A. B., & Angelis, L. (2023). Examining the performance of kernel methods for software defect prediction based on support vector machine. Science of Computer Programming, 226, 102916. https://doi.org/10.1016/j.scico.2022.102916

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In Neural Networks: Tricks of the Trade: Second Edition (pp. 437-478). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_26

Chahal, A., & Gulia, P. (2019). Machine learning and deep learning. International Journal of Innovative Technology and Exploring, 8(12), 4910-4914. https://doi.org/10.35940/ijitee.L3550.1081219

Dietz, P. M., Rose, C. E., McArthur, D., & Maenner, M. (2020). National and state estimates of adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 50(12), 4258-4266. https://doi.org/10.1007/s10803-020-04494-4

Eslami, T., Mirjalili, V., Fong, A., Laird, A. R., & Saeed, F. (2019). ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Frontiers in Neuroinformatics, 13, 70. https://doi.org/10.3389/fninf.2019.00070

Hammed, S. H., & Albahri, A. S. (2023). Unlocking the potential of autism detection: Integrating traditional feature selection and machine learning techniques. Applied Data Science and Analysis, 2023, 42-58. https://doi.org/10.58496/ADSA/2023/003

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90. https://doi.org/10.1016/j.compag.2018.02.016

Kang, J., Han, X., Song, J., Niu, Z., & Li, X. (2020). The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Computers in Biology and Medicine, 120, 103722. https://doi.org/10.1016/j.compbiomed.2020.103722

Khodatars, M., Shoeibi, A., Sadeghi, D., Ghaasemi, N., Jafari, M., Moridian, P., ... & Berk, M. (2021). Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: A review. Computers in Biology and Medicine, 139, 104949. https://doi.org/10.1016/j.compbiomed.2021.104949

Kshatri, S. S., & Singh, D. (2023). Convolutional neural network in medical image analysis: a review. Archives of Computational Methods in Engineering, 30(4), 2793-2810. https://doi.org/10.1007/s11831-023-09898-w

Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik, 29(2), 102-127. https://doi.org/10.1016/j.zemedi.2018.11.002

Maenner, M. J., Shaw, K. A., Bakian, A. V., Bilder, D. A., Durkin, M. S., Esler, A., ... & Cogswell, M. E. (2021). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveillance Summaries, 70(11), 1-16. https://doi.org/10.15585/mmwr.ss7011a1

Morais, C. L., Santos, M. C., Lima, K. M., & Martin, F. L. (2019). Improving data splitting for classification applications in spectrochemical analyses employing a random-mutation Kennard-Stone algorithm approach. Bioinformatics, 35(24), 5257-5263. https://doi.org/10.1093/bioinformatics/btz421

Nagashree, N., Patil, P., Patil, S., & Kokatanur, M. (2021, June). Alpha beta pruned UNet-a modified unet framework to segment MRI brain image to analyse the effects of CNTNAP2 gene towards autism detection. In 2021 3rd International Conference on Computer Communication and the Internet (ICCCI) (pp. 23-26). IEEE. https://doi.org/10.1109/ICCCI51764.2021.9486783

Ottoni, A. L. C., Novo, M. S., & Costa, D. B. (2023). Hyperparameter tuning of convolutional neural networks for building construction image classification. The Visual Computer, 39(3), 847-861. https://doi.org/10.1007/s00371-021-02350-9

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234-241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28

Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. (2018). Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural Processes, 148, 56-62. https://doi.org/10.1016/j.beproc.2018.01.004

Salehi, A. W., Khan, S., Gupta, G., Alabduallah, B. I., Almjally, A., Alsolai, H., ... & Mellit, A. (2023). A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability, 15(7), 5930. https://doi.org/10.3390/su15075930

Smolik, M., Skala, V., & Majdisova, Z. (2018). Vector field radial basis function approximation. Advances in Engineering Software, 123, 117-129. https://doi.org/10.1016/j.advengsoft.2018.06.013

Yazdani, S., Capuano, A., Ghaziuddin, M., & Colombi, C. (2020). Exclusion criteria used in early behavioral intervention studies for young children with autism spectrum disorder. Brain Sciences, 10(2), 99. https://doi.org/10.3390/brainsci10020099

Downloads

Published

2024-03-31

How to Cite

Lim Huey Chern, & Saleh Al-Hababi, A. Y. (2024). A Novel Hybrid Unet-RBF and CNN-RBF Algorithm for Autism Spectrum Disorder Classification. Journal of Cognitive Sciences and Human Development, 10(1), 87–102. https://doi.org/10.33736/jcshd.6778.2024