Quantifying Conventional Electroencephalogram Recordings and Examining its Output Computation with a Quantitative Electroencephalogram

Authors

  • Gregory Xavier Universiti Malaysia Sarawak
  • Anselm Su Ting Universiti Malaysia Sarawak
  • Norsiah Fauzan Universiti Malaysia Sarawak

DOI:

https://doi.org/10.33736/jcshd.3656.2021

Keywords:

quantitative electroencephalogram, conventional electroencephalogram, comparison, pattern, data merging

Abstract

Quantitative electroencephalogram enables mathematical analysis of neurological recordings while conventional electroencephalogram lacks the mathematical output; hence, its usage is limited to neurological experts. This study was to determine if quantified conventional electroencephalogram recordings were compatible and comparable with quantitative electroencephalogram recordings. A group of post-call doctors was recruited and subjected to an EEG recording using a conventional electroencephalogram followed by a quantitative electroencephalogram device. The patterns and quantified recording results were compared. A comparative analysis of the two recording sets did not find differences in the recording patterns and statistical analysis. The findings promoted the use of a readily available conventional electroencephalogram in quantitative brain wave studies and have cleared potential compatibility bias towards data merging.

References

Akerstedt, T., & Kenneth P. W. (2009). Sleep Loss and Fatigue in Shift Work and Shift Work Disorder. Sleep Medicine Clinics, 4(2), 257-271.

https://doi.org/10.1016/j.jsmc.2009.03.001

Akerstedt, T. (1987). Sleep/Wake Disturbances in Working Life. Electroencephalography and Clinical Neurophysiology, 39, 360-363.

Aminoff, M.J. (2012) London. In Nuwer, Marc R., and Pedro Coutin-Churchman (Ed.), Chapter 8 - Topographic Mapping, Frequency Analysis, and Other Quantitative Techniques in Electroencephalography. (pp. 187-206) in Aminoff's Electrodiagnosis in Clinical Neurology (Sixth Edition), London: W.B. Saunders. ISBN: 9781455726769

https://doi.org/10.1016/B978-1-4557-0308-1.00008-X

Antoine, P., Charbonnier, S., & Caplier, A. (2008). On-Line Automatic Detection of Driver Drowsiness Using a Single Electroencephalographic Channel. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 3864-3867.

Bio-medical. (2020, October 14). WinEEG Advanced Software for Mitsar. Bio-Medical-Mitsar Retrieved from https://bio-medical.com/wineeg-advanced-software-for-mitsar.html.

Ferreira, C., Deslandes, A. Moraes, H., & Cagy, M. (2006). Electroencephalographic Changes after One Night of Sleep Deprivation. Arquivos de Neuro-Psiquiatria, 64(2B), 388-393.

https://doi.org/10.1590/S0004-282X2006000300007

Forest, G., & Godbout, R. (2000). Effects of Sleep Deprivation on Performance and EEG Spectral Analysis in Young Adults. Brain and Cognition, 43(1-3), 195-200.

Grandy, T. H., Werkle-Bergner, M., Chicherio, C., Schmiedek, F., Lövdén, M., & Lindenberger, U. (2013). Peak Individual Alpha Frequency Qualifies as a Stable Neurophysiological Trait Marker in Healthy Younger and Older Adults. Psychophysiology, 50 (6), 570-582.

https://doi.org/10.1111/psyp.12043

Hughes, J. R., & E. R. John. (1999). Conventional and Quantitative Electroencephalography in Psychiatry. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(2),190-208.

https://doi.org/10.1176/jnp.11.2.190

Jobert, M., Frederick J. W., Ruigt, Gé S. F., Brunovsky, M., Prichep, L.S., & Wilhelmus H. I. M. (2012). Guidelines for the Recording and Evaluation of Pharmaco-EEG Data in Man: The International Pharmaco-EEG Society (IPEG). Neuropsychobiology, 66(4), 201-220.

https://doi.org/10.1159/000343478

Kropotov, J.D. (2009). Quantitative EEG, Event-Related Potentials and Neurotherapy (1st ed. Academic Press) United States: New York, Elsevier.

https://doi.org/10.1016/B978-0-12-374512-5.50037-1

Klimesch, W. (1999). EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis. Brain Research. Brain Research Reviews, 29(2-3), 169-195.

https://doi.org/10.1016/S0165-0173(98)00056-3

Lodder, S. S., Michel J. A. M., & Van-Putten (2013). Quantification of the Adult EEG Background Pattern. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 124(2), 228-237.

https://doi.org/10.1016/j.clinph.2012.07.007

Louis, E. K., Lauren, S. C. F., Jeffrey, W. B., Jennifer L. H., Korb, P., Mohamad Z., Koubeissi, W. E., Lievens, E. M., Knight, P., & St Louis, E.K. (2016). Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants. (1st ed. American Epilepsy Society) Chicago, IL: American Epilepsy Society.Mitsar. (2019, October 14). About Us - Mitsar : Neurodiagnostics : Electroencephalography (EEG). Mitsar, Brain Diagnostics Solutions. Retrieved from https://mitsar-eeg.com/about-us/.

Saroj K. L., & Craig, A. (2002). Driver Fatigue: Electroencephalography and Psychological Assessment. Psychophysiology, 39(3), 313-321.

https://doi.org/10.1017/S0048577201393095

Saroj K. L., Craig, A., Boord, P., Kirkup, L., & Nguyen, H. (2003). Development of an Algorithm for an EEG-Based Driver Fatigue Countermeasure. Journal of Safety Research, 34(3), 321-328.

https://doi.org/10.1016/S0022-4375(03)00027-6

Sauvet, F., Bougard, C., Coroenne, M., Lely, L., Van-Beers, P., Elbaz, M., Guillard, M., Leger, D., & Chennaoui, M. (2014). In-Flight Automatic Detection of Vigilance States Using a Single EEG Channel. IEEE Transactions on Bio-Medical Engineering, 61(12), 2840-47. doi:10.1109/TBME.2014.2331189

https://doi.org/10.1109/TBME.2014.2331189

Shyh-Yueh Cheng. (2007). Electroencephalographic Study of Mental Fatigue in Visual Display Terminal Task. Journal of Medical and Biological Engineering, 27(3), 124-131.

Strijkstra, A. M., Domien G. M. Beersma, B. D., Halbesma, N., & Daan, S. (2003). Subjective Sleepiness Correlates Negatively with Global Alpha (8-12 Hz) and Positively with Central Frontal Theta (4-8 Hz) Frequencies in the Human Resting Awake Electroencephalogram. Neuroscience Letters, 340 (1), 17-20.

https://doi.org/10.1016/S0304-3940(03)00033-8

Sürmeli, T. (2014). Chapter Nine - Treating Thought Disorders. (pp. 213-51). Clinical Neurotherapy, edited by D. S. Cantor and J. R. Evans. Boston: Academic Press.

https://doi.org/10.1016/B978-0-12-396988-0.00009-X

Vandenberghe, M.R., Peeters R., & Dupont, P. (2019). Quantitative Analyses Help in Choosing Between Simultaneous vs. Separate EEG and FMRI. Frontiers in Neuroscience, 12: 1009.

https://doi.org/10.3389/fnins.2018.01009

Xavier, G., Anselm, S. T., & Fauzan, N. (2020). Exploratory Study of Brain Waves and Corresponding Brain Regions of Fatigue On-Call Doctors Using Quantitative Electroencephalogram. Journal of Occupational Health, 62(1), 1-8.

https://doi.org/10.1002/1348-9585.12121

Downloads

Published

2021-09-25

How to Cite

Xavier, G., Su Ting, A. ., & Fauzan, N. (2021). Quantifying Conventional Electroencephalogram Recordings and Examining its Output Computation with a Quantitative Electroencephalogram. Journal of Cognitive Sciences and Human Development, 7(2), 108–120. https://doi.org/10.33736/jcshd.3656.2021