Quantifying Conventional Electroencephalogram Recordings and Examining its Output Computation with a Quantitative Electroencephalogram

  • Gregory Xavier Universiti Malaysia Sarawak
  • Anselm Su Ting Universiti Malaysia Sarawak
  • Norsiah Fauzan Universiti Malaysia Sarawak
Keywords: quantitative electroencephalogram, conventional electroencephalogram, comparison, pattern, data merging

Abstract

Quantitative electroencephalogram enables mathematical analysis of neurological recordings while conventional electroencephalogram lacks the mathematical output; hence, its usage is limited to neurological experts. This study was to determine if quantified conventional electroencephalogram recordings were compatible and comparable with quantitative electroencephalogram recordings. A group of post-call doctors was recruited and subjected to an EEG recording using a conventional electroencephalogram followed by a quantitative electroencephalogram device. The patterns and quantified recording results were compared. A comparative analysis of the two recording sets did not find differences in the recording patterns and statistical analysis. The findings promoted the use of a readily available conventional electroencephalogram in quantitative brain wave studies and have cleared potential compatibility bias towards data merging.

References

Akerstedt, T., & Kenneth P. W. (2009). Sleep Loss and Fatigue in Shift Work and Shift Work Disorder. Sleep Medicine Clinics, 4(2), 257–271. doi:10.1016/j.jsmc.2009.03.001

Akerstedt, T. (1987). Sleep/Wake Disturbances in Working Life. Electroencephalography and Clinical Neurophysiology, 39, 360–363.

Aminoff, M.J. (2012) London. In Nuwer, Marc R., and Pedro Coutin-Churchman (Ed.), Chapter 8 - Topographic Mapping, Frequency Analysis, and Other Quantitative Techniques in Electroencephalography. (pp. 187–206) in Aminoff’s Electrodiagnosis in Clinical Neurology (Sixth Edition), London: W.B. Saunders. ISBN: 9781455726769

Antoine, P., Charbonnier, S., & Caplier, A. (2008). On-Line Automatic Detection of Driver Drowsiness Using a Single Electroencephalographic Channel. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 3864–3867. doi:10.1109/IEMBS.2008.4650053

Bio-medical. (2020, October 14). WinEEG Advanced Software for Mitsar. Bio-Medical-Mitsar Retrieved from https://bio-medical.com/wineeg-advanced-software-for-mitsar.html.

Ferreira, C., Deslandes, A. Moraes, H., & Cagy, M. (2006). Electroencephalographic Changes after One Night of Sleep Deprivation. Arquivos de Neuro-Psiquiatria, 64(2B), 388–393. doi:10.1590/S0004-282X2006000300007

Forest, G., & Godbout, R. (2000). Effects of Sleep Deprivation on Performance and EEG Spectral Analysis in Young Adults. Brain and Cognition, 43(1–3), 195–200.

Grandy, T. H., Werkle-Bergner, M., Chicherio, C., Schmiedek, F., Lövdén, M., & Lindenberger, U. (2013). Peak Individual Alpha Frequency Qualifies as a Stable Neurophysiological Trait Marker in Healthy Younger and Older Adults. Psychophysiology, 50 (6), 570–582. doi:10.1111/psyp.12043

Hughes, J. R., & E. R. John. (1999). Conventional and Quantitative Electroencephalography in Psychiatry. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(2),190–208. doi:10.1176/jnp.11.2.190

Jobert, M., Frederick J. W., Ruigt, Gé S. F., Brunovsky, M., Prichep, L.S., & Wilhelmus H. I. M. (2012). Guidelines for the Recording and Evaluation of Pharmaco-EEG Data in Man: The International Pharmaco-EEG Society (IPEG). Neuropsychobiology, 66(4), 201–220. doi:10.1159/000343478

Kropotov, J.D. (2009). Quantitative EEG, Event-Related Potentials and Neurotherapy (1st ed. Academic Press) United States: New York, Elsevier.

Klimesch, W. (1999). EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis. Brain Research. Brain Research Reviews, 29(2–3), 169–195. doi:10.1016/s0165-0173(98)00056-3

Lodder, S. S., Michel J. A. M., & Van-Putten (2013). Quantification of the Adult EEG Background Pattern. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 124(2), 228–237. doi:10.1016/j.clinph.2012.07.007

Louis, E. K., Lauren, S. C. F., Jeffrey, W. B., Jennifer L. H., Korb, P., Mohamad Z., Koubeissi, W. E., Lievens, E. M., Knight, P., & St Louis, E.K. (2016). Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants. (1st ed. American Epilepsy Society) Chicago, IL: American Epilepsy Society. https://dx.doi.org/10.5698/978-0-9979756-0-4

Mitsar. (2019, October 14). About Us – Mitsar : Neurodiagnostics : Electroencephalography (EEG). Mitsar, Brain Diagnostics Solutions. Retrieved from https://mitsar-eeg.com/about-us/.

Saroj K. L., & Craig, A. (2002). Driver Fatigue: Electroencephalography and Psychological Assessment. Psychophysiology, 39(3), 313–321. doi:10.1017/S0048577201393095

Saroj K. L., Craig, A., Boord, P., Kirkup, L., & Nguyen, H. (2003). Development of an Algorithm for an EEG-Based Driver Fatigue Countermeasure. Journal of Safety Research, 34(3), 321–328. doi:10.1016/S0022-4375(03)00027-6

Sauvet, F., Bougard, C., Coroenne, M., Lely, L., Van-Beers, P., Elbaz, M., Guillard, M., Leger, D., & Chennaoui, M. (2014). In-Flight Automatic Detection of Vigilance States Using a Single EEG Channel. IEEE Transactions on Bio-Medical Engineering, 61(12), 2840–47. doi:10.1109/TBME.2014.2331189

Shyh-Yueh Cheng. (2007). Electroencephalographic Study of Mental Fatigue in Visual Display Terminal Task. Journal of Medical and Biological Engineering, 27(3), 124–131.

Strijkstra, A. M., Domien G. M. Beersma, B. D., Halbesma, N., & Daan, S. (2003). Subjective Sleepiness Correlates Negatively with Global Alpha (8-12 Hz) and Positively with Central Frontal Theta (4-8 Hz) Frequencies in the Human Resting Awake Electroencephalogram. Neuroscience Letters, 340 (1), 17–20. doi:10.1016/s0304-3940(03)00033-8

Sürmeli, T. (2014). Chapter Nine - Treating Thought Disorders. (pp. 213–51). Clinical Neurotherapy, edited by D. S. Cantor and J. R. Evans. Boston: Academic Press. doi.org/10.1016/B978-0-12-396988-0.00009-X

Vandenberghe, M.R., Peeters R., & Dupont, P. (2019). Quantitative Analyses Help in Choosing Between Simultaneous vs. Separate EEG and FMRI. Frontiers in Neuroscience, 12: 1009. doi:10.3389/fnins.2018.01009

Xavier, G., Anselm, S. T., & Fauzan, N. (2020). Exploratory Study of Brain Waves and Corresponding Brain Regions of Fatigue On-Call Doctors Using Quantitative Electroencephalogram. Journal of Occupational Health, 62(1), 1-8. doi:10.1002/1348-9585.12121

Published
2021-09-22
How to Cite
Xavier, G., Su Ting, A., & Fauzan, N. (2021). Quantifying Conventional Electroencephalogram Recordings and Examining its Output Computation with a Quantitative Electroencephalogram. Journal of Cognitive Sciences and Human Development, 7(2), 108-120. https://doi.org/10.33736/jcshd.3656.2021