LINEAR AND NONLINEAR FREE VIBRATION ANALYSIS OF RECTANGULAR PLATE
DOI:
https://doi.org/10.33736/jcest.3338.2021Keywords:
Membrane strain, total potential energy, linear, nonlinear free vibration, rectangular platesAbstract
The major assumption of the analysis of plates with large deflection is that the middle surface displacements are not zeros. The determination of the middle surface displacements, u0 and v0 along x- and y- axes respectively is the major challenge encountered in large deflection analysis of plate. Getting a closed-form solution to the long standing von Karman large deflection equations derived in 1910 have proven difficult over the years. The present work is aimed at deriving a new general linear and nonlinear free vibration equation for the analysis of thin rectangular plates. An elastic analysis approach is used. The new nonlinear strain displacement equations were substituted into the total potential energy functional equation of free vibration. This equation is minimized to obtain a new general equation for analyzing linear and nonlinear resonating frequencies of rectangular plates. This approach eliminates the use of Airy’s stress functions and the difficulties of solving von Karman's large deflection equations. A case study of a plate simply supported all-round (SSSS) is used to demonstrate the applicability of this equation. Both trigonometric and polynomial displacement shape functions were used to obtained specific equations for the SSSS plate. The numerical results for the coefficient of linear and nonlinear resonating frequencies obtained for these boundary conditions were 19.739 and 19.748 for trigonometric and polynomial displacement functions respectively. These values indicated a maximum percentage difference of 0.051% with those in the literature. It is observed that the resonating frequency increases as the ratio of out–of–plane displacement to the thickness of plate (w/t) increases. The conclusion is that this new approach is simple and the derived equation is adequate for predicting the linear and nonlinear resonating frequencies of a thin rectangular plate for various boundary conditions.
References
Leissa , A. W. & Quta, M. S. (2011). Vibration of Continuous Systems. McGraw-Hill Company, USA.
Dash, A. K. (2010). Large Amplitude Free Vibration Analysis of Composite Plates by Finite Element Method. M.Sc Thesis, National Institute of Technology, Rourkela.
Ducceschi, M. (2014). Nonlinear Vibrations of Thin Rectangular Plates: A Numerical Investigations with Application to Wave Turbulence and Sound Synthesis. Vibrations (Physics.class-ph).ENSTA Panotech
Ibearugbulem, O. M, Ezeh, J. C. & Ettu, L. O. (2014). Energy Methods in Theory of Rectangular Plates: Use of Polynomial Shape Functions. Liu House of Excellence Ventures, Owerri.
Adah, E. I., Ibearugbulem, O. M., Onwuka, D. O. & Okoroafor, S. U. (2019). Determination of Resonating Frequency of Thin Rectangular Flat Plates. International Journal of Civil and Structural Engineering Research, 7 (1), 16-22, www.researchpublish.com.
Hashemi, S. & Jaberzadeh, E. (2012). A Finite Strip Formulation for Nonlinear Free Vibration of Plates, 15 WCEE, Lisboa.
Kumar, R. & Goytom, D. (2017). Postbuckling and Nonlinear Free Vibration Response of Elastically Supported Laminated Composite Plates with Uncertain System Properties in Thermal Environment. Frontiers in Aerospace Engineering, 6 (): 1-27.
Varzandian, G. A. & Ziaei, S. (2017). Analytical Solution of Nonlinear Free Vibration of Thin Rectangular Plates with Various Boundary Conditions based on Non-local Theory. Amir Kabir Journal of science and research mechanical engineering, 48 (4): 121-124.
Onodagu, P. D. (2018). Nonlinear Dynamic Analysis of Thin Rectangular Plates using Ritz Method. PhD Thesis, Federal University of Technology, Owerri, Nigeria.
Yosibash, Z. & Kirby, R. M. (2005). Dynamic Response of various von-Karman nonlinear plate models and their 3-D counterparts. International Journal of Solids & Structures, 42, 2517-2531.
https://doi.org/10.1016/j.ijsolstr.2004.10.006
Mattieu, G., Tyekolo, D. & Belay, S. (2017). The nonlinear bending of simply supported elastic plate. RUDN Journal of Engineering researches. 18 (1), 58-69.
https://doi.org/10.22363/2312-8143-2017-18-1-58-69
Kucukrendeci, I. (2017). Nonlinear vibration analysis of composite plates on elastic foundations in thermal environments. AKU. J. Sci. Eng. 17, 790-796.
https://doi.org/10.5578/fmbd.57619
Zergoune, Z., Harras, B. & Benanar, R. (2015). Nonlinear Free Vibration vibration of C-C-SS-SS symmetrically laminated carbon fibre reinforced plastic (CFRP) rectangular composite plates. World Journal of mechanics. 5, 22-32
https://doi.org/10.4236/wjm.2015.52003
El Kaak, R. & Bikri, K (2016). Geometrically Nonlinear Free Axisymmetric Vibrations Analysis of thin circular functionally graded plates using iterative and explicit analysis solution. International Journal of Acoustics and Vibration, 21(2), 209-221.
https://doi.org/10.20855/ijav.2016.21.2414
Levy, S. (1942). Bending of Rectangular Plates with Large Deflections. Technical notes: National Advisory Committee for Aeronautics (NACA), N0. 846.
Enem, J. I. (2018). Geometrically Nonlinear Analysis of Isotropic Rectangular Thin Plates Using Ritz Method. PhD Thesis, Federal University of Technology, Owerri, Nigeria.
Elsami, M. R. (2018). Buckling and Postbuckling of Beams, Plates, and Shells. Springer International Publishing AG.
https://doi.org/10.1007/978-3-319-62368-9
Manuel, S. (1984). Analytical Results for Postbuckling Behavior of Plates in Compression and in Shear. National Aeronautics and Space Administration (NASA). NASA Technical Memorandum 85766.
Bloom, F. & Coffin, D. (2001). Thin Plate Buckling and Postbuckling. London: Chapman & Hall/CRC.
https://doi.org/10.1201/9780367801649
Byklum, E. & Amdahl, J. (2002). A Simplified Method for Elastic Large Deflection Analysis of Plates and Stiffened Panels due to Local Buckling. Thin-Walled Structures, 40 (): 925-953.
https://doi.org/10.1016/S0263-8231(02)00042-3
Tanriöver H. & Senocak, E. (2004). Large Deflection Analysis of Unsymmetrically Laminated Composite plates: Analytical-numerical type Approach. International Journal of Non-linear Mechanics, 39: 1385-1392.
https://doi.org/10.1016/j.ijnonlinmec.2004.01.001
GhannadPour, S. A. M. & Alinia, M. M. (2006). Large Deflection Behavior of Functionally Graded Plates under Pressure Loads. Composite Structures, 75: 67-71.
https://doi.org/10.1016/j.compstruct.2006.04.004
Shufrin, I., Rabinovitch, O. & Eisenberger, M. (2008). A Semi-analytical Approach for the Nonlinear Large Deflection Analysis of Laminated Rectangular Plates under General out-of-plane loading. International Journal of Non-Linear Mechanics, 43:328-340.
https://doi.org/10.1016/j.ijnonlinmec.2007.12.018
Ducceschi, M., Touze, C., Bilbao, S. & Webb, C. J. (2013). Nonlinear dynamics of rectangular plates: investigation of model interaction in free and forced vibrations. Acta Mech
https://doi.org/10.1007/s00707-013-0931-1
Stoykov, S. & Margenov, S. (2016). Finite Element Method for Nonlinear Vibration Analysis of Plates. Springer International Publishing Switzerland, 17-27.
https://doi.org/10.1007/978-3-319-32207-0_2
Ibearugbulem, O. M., Adah, E. I., Onwuka, D. O. & Okere, C. E. (2020). Simple and Exact Approach to Postbuckling Analysis of Rectangular Plate, SSRG International Journal of Civil Engineering, 7 (6): 54-64, www.internationaljournalssrg.org.
https://doi.org/10.14445/23488352/IJCE-V7I6P107
Deutsch, A., Tenenbaum, J., & Eisenberger, M. (2019). Benchmark Vibration Frequencies of Square Thin Plates with all Possible Combinations of Classical Boundary Conditions. International Journal of Structural Stability and Dynamics, 19(11), 1950131-1-1950131-16
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article, the corresponding author on behalf of all authors will be asked to complete and upload the Copyright Transfer Form (refer to Copyright Issues for more information on this) alongside the electronic proof file.
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and refer the publication in the Journal.
2) For open-access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds the copyright or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subjected to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) are responsible to ensure their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. The corresponding author has obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If the submitted manuscript includes materials from others, the authors have obtained permission from the copyright owners.
5) In signing this statement, the author(s) declare that the researches which they have conducted comply with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving humans or the use of animal samples must obtain approval from the Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that they have no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor(s) or UNIMAS Publisher.