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Abstract — The major assumption of the analysis of plates with large deflection is that the middle surface 

displacements are not zeros. The determination of the middle surface displacements, u0 and v0 along x- and y- axes 

respectively is the major challenge encountered in large deflection analysis of plate. Getting a closed-form solution 

to the long standing von Karman large deflection equations derived in 1910 have proven difficult over the years. 

The present work is aimed at deriving a new general linear and nonlinear free vibration equation for the analysis 

of thin rectangular plates. An elastic analysis approach is used. The new nonlinear strain displacement equations 

were substituted into the total potential energy functional equation of free vibration. This equation is minimized to 

obtain a new general equation for analyzing linear and nonlinear resonating frequencies of rectangular plates. This 

approach eliminates the use of Airy’s stress functions and the difficulties of solving von Karman's large deflection 

equations. A case study of a plate simply supported all-round (SSSS) is used to demonstrate the applicability of 

this equation. Both trigonometric and polynomial displacement shape functions were used to obtained specific 

equations for the SSSS plate. The numerical results for the coefficient of linear and nonlinear resonating frequencies 

obtained for these boundary conditions were 19.739 and 19.748 for trigonometric and polynomial displacement 

functions respectively. These values indicated a maximum percentage difference of 0.051% with those in the 

literature. It is observed that the resonating frequency increases as the ratio of out–of–plane displacement to the 

thickness of plate (w/t) increases. The conclusion is that this new approach is simple and the derived equation is 

adequate for predicting the linear and nonlinear resonating frequencies of a thin rectangular plate for various 

boundary conditions. 
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1.0 INTRODUCTION 

Generally, environmental conditions lead a majority of structures as a whole or some parts to be subjected to 

dynamic loadings during their life span. It is expected most often that, these structures or elements performed 

optimally with these adverse dynamic circumstances, thereby avoiding the damages caused by the resonating 

frequencies. Most scholars believe that the maximum amplitude of vibration must be limited for the safety of the 

structure [1,2,3,4,5]. Of recent, free vibration of plates with large deflection have received considerable attention, 

because structures of low flexural rigidity are susceptible to large amplitude vibration [6,7,8,9,10,11]. Researchers 

have analyzed nonlinear vibrations of composite plates because of their lightweight advantage just like thin plates 

[12,13,14]. The major assumption of the analysis of plates with large deflection is that the middle surface 

displacements are not zeros [15,16]. Large deflection analysis of rectangular plate anchors mostly on von-Karman 

type nonlinear strain-displacement relations [16] and are given as equations 1 and 2: 

εxx =
∂u

∂x
= −z

∂2w

∂x2
+ [

1

2
(

∂w

∂x
)

2

+
∂u0

∂x
]  (1) 

εyy =
∂v

∂y
= −z

∂2w

∂y2
+ [

1

2
(

∂w

∂y
)

2

+
∂v0

∂y
] (2)
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Where εxx and εyy are nonlinear strains along the x- and y-direction respectively; u and v are displacements in x- 

and y- directions respectively; w is out-of-plane displacement; u0 and v0 are middle surface displacement in the 

x- and y- directions respectively. 

The first term is bending strain, while the second term in square brackets is the total membrane strain of the plate 

along the x- or y-direction.  The determination of the middle surface displacements, u0 and v0 along x- and y- axes 

respectively is the major challenge encountered in large deflection analysis of plate. Most authors 

[17,18,19,20,21,22] have assumed expressions for the middle surface displacement rather than determining them 

from the actual behavior of the plate at the inelastic range. This led to unsatisfactory results beyond the elastic limit 

of the plate. Also, Airy's stress function is another challenge in the analysis of a plate with large deflection. Unlike 

earlier authors, some recent authors [23,9,11], determined the stress functions by direct integration. However, their 

approaches were too complex and full of assumptions that may have construed the actual behavior of a loaded 

plate. Hence, their results underestimate the carrying capacity of a plate beyond the yield point. Some authors used 

numerical methods to determine the nonlinear frequencies of a plate by incorporating geometric nonlinearities [24, 

25]. This was to avoid the difficulties associated with trying to obtain a closed-form solution to von Karman large 

deflection equation. 

Beyond the yield point, a plate carries the load by the membrane action. The membrane strains are responsible for 

this additional strength of the plate. Hence, they [26] obtained the nonlinear strain displacement relations as 

equations 3 and 4: 

εxx =
∂u

∂x
= −z

∂2w

∂x2
+

1

4
(

∂w

∂x
)

2

                                                                                               (3) 

εyy =
∂v

∂y
= −z

∂2w

∂y2
+

1

4
(

∂w

∂y
)

2

                                                                                               (4) 

The in-plane shear strain, γxy within x - y plane is given as equation 5: 

γxy =
∂u

∂y
+

∂v

∂x
= 2 [−z

∂2w

∂x ∂y
+

1

4
(

∂w

∂x
) (

∂w

∂y
)]                                                                  (5) 

And the middle surface strains along the x- and y-axis (εx0 and εy0) of the plate are given as equations 6 and 7: 

εx0 =
∂u0

∂x
= − 

1

3
(

∂w

∂x
)

2

                                                                                                          (6)  

εy0 =
∂u0

∂x
=  − 

1

3
(

∂w

∂y
)

2

                                                                                                         (7)  

In order, to circumvent the use of Airy's stress function and avoid arriving at the same governing equation 

introduced by von-Karman, this study presents a simple and exact approach to free vibration analysis of rectangular 

thin plates with large deflection. It is aimed at formulating a general free vibration equation for the analysis of a 

plate with both small and large deflection for all boundary conditions. This will be achieved via the use of new 

nonlinear strain displacement equations in the total potential energy functional equation and minimization. It will 

also, formulate the specific equation for a plate simply supported all-round the edges (SSSS) as a case study. 

2.0 MATERIALS AND METHODS  

The method used here is the total potential energy/variational method. The formulation is as follows: 

2.1 TOTAL POTENTIAL ENERGY FUNCTIONAL 

The total potential energy functional, Π, of a thin rectangular plate under free vibration is given as equation 8: 
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Π =
1

2
  ∫ ∫ ∫ (𝜎𝑥𝑥 𝜀𝑥𝑥 + 𝜎𝑦𝑦 𝜀𝑦𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦)

𝑧

0

𝑏

0

𝑑𝑥𝑑𝑦𝑑𝑧
𝑎

0

 

−
𝜌𝑡𝜆2

2
∫ ∫ 𝑤2

𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

                                                    (8) 

Where λ  Resonating frequency or fundamental natural frequency, t is the plate thickness, 𝜌 is the density of the 

plate material. And the constitutive relations are given as equation 9: 

σx =  
E

1 − v2 ( εxx +  vεyy)                                                                                                     (9a) 

σy =  
E

1 − v2 ( εyy +   vεxx)                                                                                                     (9b) 

   τxy =  
E(1 − v)

2(1 − v2)
γxy                                                                                                               (9c) 

Substituting equations 9 into equation 8 yields equation 10: 

Π =
𝐸

2(1 − 𝑣2)
  ∫ ∫ ∫ [ 𝜀𝑥𝑥

2 +  2𝑣𝜀𝑥𝑥 𝜀𝑦𝑦 +
𝛾𝑥𝑦 2

2
− 𝑣

𝛾𝑥𝑦 2

2
 +  𝜀𝑦𝑦 2]  

𝑧

0

𝑏

0

𝑑𝑥𝑑𝑦𝑑𝑧
𝑎

0

−
𝜌𝑡𝜆2

2
∫ ∫ 𝑤2

𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

                                                                               (10) 

Substituting the nonlinear strain displacement relations in equations 3 and 5 into equation 10, we have equation 11: 

Π =
E

2(1 − ν2)
∫ ∫ ∫ {z2 [(

∂2w

∂x2 )

2

+ 2 (
∂2w

∂x ∂y
)

2

+ (
∂2w

∂y2 )

2

]
t 2⁄

−t 2⁄

b

0

a

0

−
z

2
[
∂2w

∂x2
. (

∂w

∂x
)

2

+ 2
∂2w

∂x ∂y
. (

∂w

∂x
) (

∂w

∂y
) +

∂2w

∂y2
. (

∂w

∂y
)

2

]

+
1

16
[(

∂w

∂x
)

4

+ 2 (
∂w

∂y
)

2

+ (
∂w

∂y
)

4

]}  dx . dy . dz

−
𝜌𝑡𝜆2

2
∫ ∫ 𝑤2

𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

                                                                              ( 11) 

By carrying out the closed domain integration of equation 11 with respect to z gives equation 12: 

Π

=
D

2
∫ ∫ [(

d2w

dx2 )

2

+ 2 (
d2w

dxdy
)

2

+ (
d2w

dy2 )

2

]
𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

+
gD

2 × 16
∫ ∫ ([

∂w

∂x
]

4

+ 2 [
∂w

∂x
]

2

[
∂w

∂y
]

2

+ [
∂w

∂y
]

4

)
𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

 

−
𝜌𝑡𝜆2

2
∫ ∫ 𝑤2

𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

                                                                                                   (12)  

 Where: D =
Et3

12(1 − ν2)
;  g =

12

t2
;   gD =

12

t2
×

Et3

12(1 − ν2)

=
Et

(1 − ν2)
                                                                                                                                      (13a − c) 
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Writing equation 12 in terms of the non-dimensional coordinates, R   =   x/a       and Q   = y/b, for 0≤R≤1; 0≤Q≤1, 

we have equation 14: 

Π =
bD

2a3
∫ ∫ [(

d2w

dR2 )

2

+
2

Ƨ2 (
d2w

dRdQ
)

2

+
1

Ƨ4 (
d2w

dQ2 )

2

]
1

0

𝑑𝑥𝑑𝑦
1

0

+
bgD

2a3 × 16
∫ ∫ [(

∂w

∂R
)

4

+
2

Ƨ2
(

∂w

∂R
)

2

(
∂w

∂Q
)

2

+
1

Ƨ4
(

∂w

∂Q
)

4

]
1

0

𝑑𝑥𝑑𝑦
1

0

 

−
𝑎𝑏𝜌𝑡𝜆2

2
∫ ∫ 𝑤2

1

0

𝑑𝑅𝑑𝑄
1

0

                                                                           (14)  

To minimizing equation 12 with respect to w, u0 and v0, let rewrite equation 12 as equation 15: 

Π =
D

2
∫ ∫ [

d3

dx3
 
dw2

dx
+

d3

dxdy2
 
dw2

dx
+

d3

dx2dy
 
dw2

dy
+

d3

dy3
 
dw2

dy
]

𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

+ 
gD

2 × 16
∫ ∫ [

∂2

∂x2 (
∂w2

∂x
 )

2

+  
∂

∂x
.

∂

∂x
.

∂

∂y
.

∂

∂y
 (w2)2   

𝑏

0

𝑎

0

+
∂2

∂y2 (
∂w2

∂y
 )

2

] 𝑑𝑥𝑑𝑦 − −
𝜌𝑡𝜆2

2
∫ ∫ 𝑤2

𝑏

0

𝑑𝑥𝑑𝑦
𝑎

0

                                 (15) 

Note that minimization with respect to u0 and v0 shall be based on the differential part without involving the 

constants coefficients.  

Now, minimizing equation 15 with respect to w gives equation 16a: 

∂Π

∂w
= ∫ ∫ {𝐷 [ 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
] +

𝑏

0

𝑎

0

𝑔𝐷

16
[(

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑥2
+  (

𝜕𝑤

𝜕𝑦
)

2 𝜕2𝑤

𝜕𝑥2
+ (

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑦2

+ (
𝜕𝑤

𝜕𝑦
)

2 𝜕2𝑤

𝜕𝑦2
] − 𝜌𝑡𝜆2𝑤}𝑑𝑥𝑑𝑦 = 0        

For this equation to be true, the integrand must be equal to zero. 

𝐷 [ 
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
]

+
𝑔𝐷

16
[(

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑥2
+  (

𝜕𝑤

𝜕𝑦
)

2 𝜕2𝑤

𝜕𝑥2
+ (

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑦2
+ (

𝜕𝑤

𝜕𝑦
)

2 𝜕2𝑤

𝜕𝑦2
]      

− 𝜌𝑡𝜆2𝑤  = 0                                                                                               (16𝑎) 

Minimizing equation 15 with respect to (dw2/dx) gives equation 16b: 

∂Π

∂ (
∂w2

∂x
 )

=
D

2

∂

∂x
[

d2

dx2
+

d2

dy2
] + gDc2

2
∂

∂x
[(

∂w

∂x
 )

2

+ (
∂w

∂y
 )

2

] − 0 = 0 

That is: 

∂Π

∂ (
∂w2

∂x
 )

=
gD

16
.

∂

∂x
[(

∂w

∂x
 )

2

+ (
∂w

∂y
 )

2

] = 0 

That is: 

[(
∂w

∂x
 )

2

+ (
∂w

∂y
 )

2

] = 0                                                                                                            (16b) 
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Minimizing equation 15 with respect to (dw2/dy) gives equation 16c: 

∂Π

∂ (
∂w2

∂y
 )

=
D

2

∂

∂y
[

d2

dx2
+

d2

dy2
] +

gD

16

∂

∂y
[(

∂w

∂x
 )

2

+ (
∂w

∂y
 )

2

] − 0 = 0 

That is: 

∂Π

∂ (
∂w2

∂y
 )

=
gD

16
.

∂

∂y
[(

∂w

∂x
 )

2

+ (
∂w

∂y
 )

2

] = 0 

That is: 

[(
∂w

∂x
 )

2

+ (
∂w

∂y
 )

2

] = 0                                                                                                           (16c) 

Equation 16a is the governing equation, while equations 16b and 16c are the displacement compatibility equations. 

It is seen from equations 16b and 16c that; 

(
∂w

∂x
 )

2

= − (
∂w

∂y
 )

2

                                                                                                                   (17) 

Substituting equation 17 into equation 6 we have equation 18: 

εx0 =
∂u0

∂x
=   

1

3
(

∂w

∂y
)

2

                                                                                                              (18)  

Comparing equations 7 and 18  we have equation 19: 

εx0 = −εy0                                                                                                                                    (19)  

Substituting equation 17 into equation 16a we have equation 20: 

𝐷 [ 
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
]  − 𝜌𝑡𝜆2𝑤  = 0                                                                      (20) 

Let the solution of equation 20 be in the form of equation 21: 

w = aihx × bihy = Ah                                                                                                               (21) 

Substituting equation 21 into equation 14 gives equation 22: 

Π  =
𝑏𝐷𝐴2

2𝑎3
 ∫ ∫ [ (

𝜕2ℎ

𝜕𝑅2)

2

+
2

Ƨ2 (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+  
1

Ƨ4 (
𝜕2ℎ

𝜕𝑄2)

2

]
1

0

1

0

𝑑𝑅𝑑𝑄 

+   
𝑏𝑔𝐷𝐴4

2𝑎3 ∗ 16
∫ ∫ [(

𝜕ℎ

𝜕𝑅
)

4

+
2

Ƨ2
(

𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

    +
1

Ƨ4
(

𝜕ℎ

𝜕𝑄
)

4

]
1

0

1

0

𝑑𝑅𝑑𝑄

−
𝑎𝑏𝜌𝑡𝜆2𝐴2

2
∫ ∫ ℎ2

1

0

𝑑𝑅𝑑𝑄
1

0

                                                                       (22) 

Where A is the amplitude of deflection, and h is the displacement shape profile. 

Minimizing equation 22 with respect to A gives equation 23: 

∂Π

∂A
=

AbD

a3 ∬ [(
d2h

dR2)
2

+
2

Ƨ2 (
d2h

dRdQ
)

2

+
1

Ƨ4 (
d2h

dQ2)
2

] dR dQ +
A3bgD

8a3 ∬ [(
∂h

∂R
)

4
+

2

Ƨ2 (
∂h

∂R
)

2
(

∂h

∂Q
)

2
+

1

Ƨ4 (
∂h

∂Q
)

4
]  dR dQ − 𝑎𝑏𝜌𝑡𝜆2𝐴 ∫ ∫ ℎ21

0
𝑑𝑅𝑑𝑄

1

0
= 0                                                                (23) 

Multiply equation 23 by
𝑎3

𝐷𝑏
, we have equation 24: 
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∫ ∫ [ (
𝜕2ℎ

𝜕𝑅2)

2

+
2

Ƨ2 (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+  
1

Ƨ4 (
𝜕2ℎ

𝜕𝑄2)

2

]
1

0

1

0

𝑑𝑅𝑑𝑄 

+   
𝑔𝐴2

8
∫ ∫ [(

𝜕ℎ

𝜕𝑅
)

4

+
2

Ƨ2
(

𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

    +
1

Ƨ4
(

𝜕ℎ

𝜕𝑄
)

4

]
1

0

1

0

𝑑𝑅𝑑𝑄

−
𝜌𝑡𝜆2𝑎4

𝐷
∫ ∫ ℎ2

1

0

𝑑𝑅𝑑𝑄
1

0

 = 0                                                                   (24) 

Rewriting equation 24 in symbolic form, we have equation 25: 

[𝑘𝑏𝑥 +
2𝑘𝑏𝑥𝑦

Ƨ2
+

𝑘𝑏𝑦

Ƨ4 ] +
𝑔𝐴2

8
[𝑘𝑚𝑥 +

2𝑘𝑚𝑥𝑦

Ƨ2
+

𝑘𝑚𝑦

Ƨ4 ] = 𝜌𝑡𝜆2
𝑎4

𝐷
𝑘𝜆                                 (25)      

𝑊ℎ𝑒𝑟𝑒, 𝑘𝑏𝑥 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑅2)

21

0

1

0

𝑑𝑅𝑑𝑄;       𝑘𝑏𝑥𝑦 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄 

𝑘𝑏𝑦 =  ∫ ∫ (
𝜕2ℎ

𝜕𝑄2)

21

0

1

0

𝑑𝑅𝑑𝑄;        𝑘𝑚𝑥 =  ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

41

0

1

0

𝑑𝑅𝑑𝑄 

𝑘𝑚𝑥𝑦 =  ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄;       𝑘𝑚𝑦 =  ∫ ∫ (
𝜕ℎ

𝜕𝑄
)

41

0

1

0

𝑑𝑅𝑑𝑄 

𝑘𝜆 =  ∫ ∫ ℎ2
1

0

𝑑𝑅𝑑𝑄
1

0

                                                                                                               (26𝑎 − 𝑓) 

Subscripts b and m denote bending and membrane parts respectively. 

From equation 25, we have equation 27: 

𝐾𝑏𝑇 +
𝑔𝐴2

8
𝐾𝑚𝑇 = 𝜌𝑡𝜆2

𝑎4

𝐷
𝑘𝜆                                                                                                   (27) 

𝑊ℎ𝑒𝑟𝑒, 𝐾𝑏𝑇 = [𝑘𝑏𝑥 +
2𝑘𝑏𝑥𝑦

Ƨ2
+

𝑘𝑏𝑦

Ƨ4 ] ;   𝐾𝑚𝑇 = [𝑘𝑚𝑥 +
2𝑘𝑚𝑥𝑦

Ƨ2
+

𝑘𝑚𝑦

Ƨ4 ]                                                           (28) 

𝐾𝑏𝑇 is the total bending stiffness and 𝐾𝑚𝑇 is the total membrane stiffness. 

Substitute equations 11a and 11b into equation 27 we have equation 29: 

𝜌𝜆2𝑎4

𝐸𝑡2
=

1

12(1 − 𝑣2)
 [

𝐾𝑏𝑇

𝑘𝜆
+

3

2

𝐾𝑚𝑇

𝑘𝜆
(

𝐴

𝑡
)

2

]                                                                          (29) 

From equation 29, the linear/nonlinear resonating frequency is given as equation 30: 

𝜆 =  √[ 
𝐾𝑏𝑇

𝑘𝜆
+

3

2

𝐾𝑚𝑇

𝑘𝜆
(

𝐴

𝑡
)

2

 ] ∗
1

𝑎2
√

𝐷

𝜌𝑡
                                                                                  (30) 

Where 𝜆 = 𝜆𝑥 is the linear/nonlinear resonating frequency along the x-axis. Equation 30 is the general 

linear/nonlinear resonating frequency of a rectangular isotropic plate undergoing free vibration. Also from equation 

27, the ratio of the amplitude of deflection to the thickness of the plate can be given as  
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(
𝐴

𝑡
)

2

= 8(1 − 𝑣2) ∗
𝑘𝜆

𝐾𝑚𝑇
∗

𝜌𝜆2𝑎4

𝐸𝑡2
−  

2

3

𝐾𝑏𝑇

𝐾𝑚𝑇
                                                                       (31) 

And the maximum displacement, w, at the corresponding resonating frequency is as equation 32:  

𝑤 =  √
2

3

(ℎmax )
2

𝐾𝑚𝑇
[
12(1 − 𝑣2)𝑘𝜆 𝑎2𝜌𝜆𝑥

2

𝐸
− 𝑡2𝐾𝑏𝑇]                                                        (32) 

2.2 NUMERICAL APPLICATION 

Let’s consider a simply supported rectangular plate (SSSS), the trigonometric displacement shape profile, h, is 

given as equation 33: 

ℎ = (𝑆𝑖𝑛 𝜋𝑅) (𝑆𝑖𝑛 𝜋𝑄);   ℎ𝑥 = (𝑆𝑖𝑛 𝜋𝑅) ;  ℎ𝑦 = (𝑆𝑖𝑛 𝜋𝑄)                                           (33) 

While the polynomial displacement shape profile is given as equation 34: 

ℎ = (R − 2R3 + R4)(Q − 2Q3 + Q4)                                                                                   (34a)   

𝑊ℎ𝑒𝑟𝑒, h𝑥 =  (R − 2R3 + R4);  h𝑦 = (Q − 2Q3 + Q4)                                                                                     (34𝑏) 

Evaluating the plate stiffness from equations 26a-f using the trigonometric displacement shape profile, we have the 

results obtained presented in row 2 of Table 1. While stiffness results obtained from polynomial displacement shape 

profile are presented in row 3 of Table 1. 

Substituting these stiffness values in equation 30 we have the specific equation for linear/nonlinear resonating 

frequency for SSSS plate undergoing free vibration, as presented in Table 2. 

3.0 RESULTS AND DISCUSSION 

Table 1 showed the plate stiffness results obtained from equations 26a-f using both trigonometric and polynomial 

displacement profiles. While Table 2 showed the various new equations developed from this present work. 
 

Table 1 Stiffness values for SSSS plate from both Trigonometric and Polynomial Analyses 

Ks 𝐤𝐛𝐱 𝐤𝐛𝐱𝐲 𝐤𝐛𝐲 𝐤𝐦𝐱  𝐤𝐦𝐱𝐲  𝐤𝐦𝐲 𝐤𝐍𝐱 

Trig. π4

4
 

π4

4
 

π4

4
 

9π4

64
 

π4

64
 

9π4

64
 

π2

2
 

Poly. 0.236190 0.235918 0.236190 0.001300 0.000138 0.001300 0.002421 

 

The new mathematical models formulated are presented in Table 2. These equations will help in the easy prediction 

of the frequency of a loaded plate at a particular deflection based on the thickness of the plate. The three parameters 

unknown in the equation are the frequency, 𝜆𝑀𝑎𝑥 , the deflection or displacement, w, and the plate thickness, t. In 

designing, knowing the limiting or maximum deflection of a plate, and the maximum frequency required to avoid 

resonance, a designer can comfortable with this equation determine the plate thickness required to avoid failure. 

Any of the parameters can be determine by knowing the values of the other parameters. Also, when the deflection, 

w, is zero, the equation will predict the fundamental natural frequency of the plate. That means, the plate deflection 

is still within the elastic limit and still linear. The use of both the polynomial and trigonometric shape functions in 

the formulation of the specific equation for the SSSS boundary condition provided an easy alternative to analysts 

and indicate the adequacy of the new approach. The numerical results obtained from equations 29 and 30 (shown 

in Table 2) are presented in columns 2 and 3 for linear/nonlinear resonating frequency parameter and in columns 6 

and 7 for linear and nonlinear resonating frequency of plate in Table 3. 
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Table 2 New Linear/Nonlinear Resonating Frequency Equations from this work 

SN Description Equation 

1 General Linear/Nonlinear 

Resonating Frequency 

Parameter, 
𝜌𝜆2𝑎4

𝐸𝑡2  

𝜌𝜆2𝑎4

𝐸𝑡2
=

1

12(1 − 𝑣2)
 [

𝐾𝑏𝑇

𝑘𝜆

+
3

2

𝐾𝑚𝑇

𝑘𝜆

1

(ℎmax )
2

(
𝑤

𝑡
)

2

] 

2 General Linear/Nonlinear 

Resonating Frequency, 𝜆 𝜆𝑀𝑎𝑥 = √[ 
𝐾𝑏𝑇

𝑘𝜆

+
3

2

𝐾𝑚𝑇

𝑘𝜆

1

(ℎmax )
2

(
𝑤

𝑡
)

2

 ] ∗
1

𝑎2
√

𝐷

𝜌𝑡
 

3 Dynamic Amplitude of 

Displacement to plate 

thickness, (
𝐴

𝑡
)

2

 

(
𝐴

𝑡
)

2

= 8(1 − 𝑣2) ∗
𝑘𝜆

𝐾𝑚𝑇

∗
𝜌𝜆2𝑎4

𝐸𝑡2
−   

2

3

𝐾𝑏𝑇

𝐾𝑚𝑇

 

4 General Plate Displacement 

Equation at point of Maximum 

displacement, w 
𝑤 =  √

2

3

(ℎmax )
2

𝐾𝑚𝑇

[
12(1 − 𝑣2)𝑘𝜆 𝑎2𝜌𝜆𝑥

2

𝐸
− 𝑡2𝐾𝑏𝑇] 

5 

Linear/Nonlinear Resonating 

Equation for  SSSS Plate at 

point of maximum 

displacement (Trigonometric), 

𝜆𝑀𝑎𝑥  

𝜆𝑀𝑎𝑥 =
1

𝑎2Ƨ2
[{97.4090910849(Ƨ4 + 1)

+ 194.8181821698Ƨ2}

+ {82.1889206029(Ƨ4 + 1)

+ 18.2642045784Ƨ2} (
𝑤

𝑡
)

2

]

1
2

√
𝐷

𝜌𝑡
 

6 

Linear/Nonlinear Resonating 

Equation for  SSSS Plate at 

point of maximum 

displacement (Polynomial), 

𝜆𝑀𝑎𝑥  

𝜆𝑀𝑎𝑥  =
1

𝑎2Ƨ2
[{97.5483870968(Ƨ4 + 1)

+ 194.8720083247Ƨ2}

+ {84.4335749229(Ƨ4 + 1)

+ 17.9521978368Ƨ2} (
𝑤

𝑡
)

2

]

1
2

√
𝐷

𝜌𝑡
 

 
 

To validate the results obtained from this work, both trigonometric and polynomial displacement shape functions 

were used in the analysis. These numerical results were compared in columns 4 and 8 of Table 3 for frequency 

parameter and linear/nonlinear resonating frequency respectively. The percentage differences for the frequency 

parameter had a maximum value of 1.537 while those of resonating frequencies were less than 1. This is negligible 

and showed a good agreement between the results of the two numerical approaches. Also, there is a good agreement 

between the critical resonating frequencies (that is, the fundamental frequencies) between this work and those in 

literature as shown in Table 4.  The fundamental frequencies obtained from the use of trigonometric and polynomial 

displacement shape profiles indicated a percentage difference of -0.043, meaning that, the trigonometric 

displacement shape profile yield results which are lower bound to those obtain by polynomial displacement shape 

profile. However, the present fundamental frequency value is the same as the value obtained by Leissa & Quta 

(2011) and Deutsch et al. (2019). It indicates that the new equations developed by this work were adequate for free 

vibration analysis of rectangular plates. These results also indicated that the nonlinear frequency increases as the 

w/t increase. In contrast to Figure 1, the nonlinear frequency decreases as the aspect ratio (b/a) increase. This is in 

the agreement with the work of Onodagu (2018) and reflects the behavior of thin rectangular plates. However, 

Figure 1 showed a complete agreement between the results of the two displacement shape profiles. Besides, the 

gradual increase in the nonlinear frequency from the fundamental frequency as w/t increases indicated the adequacy 

of the results. This indicates the actual behavior of the SSSS rectangular plate before ultimate failure. It’s also 

indicated that the SSSS plate does not fail geometrically but may fail materially. 
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Table 3 Linear/Nonlinear Resonating Frequency Parameter values and Linear/Nonlinear Resonating 

Frequency, for Aspect Ratio, Ƨ = 1 

𝒘

𝒕
 

 

𝛒𝛌𝟐𝐚𝟒

𝐄𝐭𝟐
 

 

% Difference 

 

100(F1-F2)/F1 

  

𝝀𝑴𝒂𝒙  =  
𝗳

𝐚𝟐
∗ √

𝐃

𝛒𝐭
 

%Difference 

 

100(f1-f2)/f1 

 

𝗳

= √[
𝐊𝐛𝐓

𝐤𝛌

 +
𝟑

𝟐

𝐊𝐦𝐓

𝐤𝛌

𝟏

(𝒉𝐦𝐚𝐱 )
𝟐

(
𝒘

𝒕
)

𝟐

 ] 

Col. 1 Col. 2 Col.3 Col.4 Col.5 Col.6 Col. 7 Col. 8 

 Trig. 𝑭𝟏 Poly. 𝑭𝟐  

 

Trig. 𝙛𝟏 Poly. 𝙛𝟐  

0 35.681 35.711 -0.085 19.739 19.748 -0.043 

0.25 36.146 36.187 -0.114 19.867 19.879 -0.057 

0.5 37.539 37.613 -0.196 20.247 20.267 -0.098 

0.75 39.862 39.989 -0.319 20.864 20.897 -0.159 

1 43.115 43.317 -0.469 21.698 21.749 -0.234 

1.25 47.296 47.595 -0.632 22.726 22.798 -0.315 

1.5 52.406 52.823 -0.796 23.922 24.017 -0.397 

1.75 58.446 59.003 -0.952 25.263 25.383 -0.475 

2 65.415 66.133 -1.097 26.727 26.873 -0.547 

2.25 73.313 74.213 -1.228 28.295 28.468 -0.612 

2.5 82.141 83.245 -1.344 29.950 30.150 -0.670 

2.75 91.897 93.227 -1.447 31.678 31.907 -0.721 

3 102.583 104.159 -1.537 33.469 33.726 -0.766 

 

Table 4 Comparison Fundamental frequency from this work with those in literature 

Present work, 

Trig. 

Present work, Poly Leissa & Quta. 

(2011);  

Deutsch, et al 

(2019) [27] 

Onodagu (2018) Njoku, (2018) 

19.739 19.748 19.739 19.748 19.749 

%Difference -0.043 0.000 -0.0456 -0.05064 

 

 

 

Figure 1 Relationship between Linear/Nonlinear Resonating Frequency and the Aspect Ratio (b/a) for given Displacement 

to thickness ratio (w/t). 
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This means that the failure of the plate based on these results may be due mostly to material imperfection such as 

manufacturing defects, use of substandard materials, etc rather than failure due to the shape of the plate or support 

conditions used. Since there is a continuous increase in the frequency beyond the fundamental frequency as w/t 

increases. This is in agreement with the works of Oguaghamba (2015) and Onoduga (2018).  Furthermore, it’s 

showed that both displacement shape profiles were adequate for rectangular plate analysis for both small and large 

deflection.   

4.0 CONCLUSION 

The present work had derived a new general linear/nonlinear free vibration equation for the analysis of rectangular 

thin plates.  It's had also, derived the linear/nonlinear free vibration equations for SSSS rectangular plate by using 

both trigonometric and polynomial analyses. The approach used here is independent of the complex von Karman 

nonlinear equations of large deflection and Airy’s functions. The results obtained for the linear and nonlinear 

frequencies using polynomial and trigonometric shape functions had agreed very closely with each other and with 

those in literature with percentage difference less than 1. Also, the results indicated that the nonlinear frequency 

increases as the w/t increase but decrease with increase in aspect ratio. Furthermore, it was observed that the SSSS 

plate will not fail geometrically but rather it may fail materially. This means that the failure of the plate based on 

these results may be due mostly to material imperfection such as manufacturing defects, use of substandard 

materials, etc rather than failure due to the shape of the plate or support conditions used. This is in agreement with 

the works of Oguaghamba (2015) and Onoduga (2018).  It is concluded that this approach is simpler and exact and 

has eliminated greatly the difficulties associated with closed-form large deflection analysis of rectangular plates. 

Also, that the developed equations are adequate for linear/nonlinear free vibration analysis of rectangular plate. 
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