Chemical Reactivity Descriptors and Molecular Docking Studies of Octyl 6-O-hexanoyl-β-D-glucopyranosides

  • Naimul Islam Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, 4331, Bangladesh https://orcid.org/0000-0003-4335-9323
  • Mohammad H.O. Roshid Department of Anesthesia and Intensive Care, Chattogram Medical College, Chittagong, 4203, Bangladesh
  • Md. Lutfor Rahaman Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, 4331, Bangladesh https://orcid.org/0000-0001-9897-1267
Keywords: COVID-19, n-Octyl β-D-glucopyranoside (OBG), Docking, Potential drugs

Abstract

The present study describes different chemical reactivity predictions of 6-O-hexanoylation of octyl β-D-glucopyranosides prepared from octyl β-D-glucopyranoside (OBG). Also, molecular docking of the OBGs was conducted against SARS-CoV-2 main protease (6LU7), urate oxidase (Aspergillus flavus; 1R51) and glucoamylase (Aspergillus niger; 1KUL). DFT optimization indicated that glucoside 1 and its ester derivatives 2-7 exist in 4C1 conformation with C1 symmetry. Interestingly, the addition of ester group(s) decreased the HOMO-LUMO gap (Δԑ) of glucosides indicating their good chemical reactivities, whereas the other chemical reactivity descriptors indicated their moderate reactive nature. This fact of moderate reactivity was confirmed by their molecular docking with 6LU7, 1R51 and 1KUL. All the esters showed a moderate binding affinity with these three proteins. More importantly, incorporation of the ester group(s) increased binding affinity with 6LU7 and 1R51, whereas decreased with 1KUL as compared to non-ester OBG 1.

References

[1] Zhang, Y., & Wang, F. (2015). Carbohydrate drugs: current status and development prospect. Drug Discoveries & Therapeutics, Vol.9, No. 2, 79–87. https://doi.org/10.5582/ddt.2015.01028

Hanee, U., Rahman, M. R., & Matin, M. M. (2021). Synthesis, PASS, in silico ADMET, and thermodynamic studies of some galactopyranoside esters. Physical Chemistry Research, Vol.9, No.4, 591–603. https://doi.org/10.22036/pcr.2021.282956.1911

Dhavale, D. D., Matin, M. M., Sharma, T., & Sabharwal S. G. (2003). N-Hydroxyethyl-piperidine and –pyrrolidine homoazasugars: preparation and evaluation of glycosidase inhibitory activity. Bioorganic & Medicinal Chemistry, Vol.11, No.15, 3295–3305. https://doi.org/10.1016/S0968-0896(03)00231-1

Lucarini, S., Fagioli, L., Campana, R., Cole, H., Duranti, A., Baffone, W., Vllasalium, D., & Casettari, L. (2016). Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity. European Journal of Pharmacy & Biopharmacy, Vol.107, 88–96. https://doi.org/10.1016/j.ejpb.2016.06.022

Osborn, H. M., Evans, P. G., Gemmell, N., & Osborne, S. D. (2004). Carbohydrate-based therapeutics. Journal of Pharmacy and Pharmacology, Vol.56, 691–702. https://doi.org/10.1211/0022357023619

Matin, M. M., & Chakraborty, P. (2020). Synthesis, spectral and DFT characterization, PASS predication, antimicrobial, and ADMET studies of some novel mannopyranoside esters. Journal of Applied Science & Process Engineering, Vol.7, No. 2, 572–586. https://doi.org/10.33736/jaspe.2603.2020

Plat, T., & Linhardt, R. J. (2001). Syntheses and applications of sucrose-based esters. Journal of Surfactants Detergents, Vo.4, 415–421. https://doi.org/10.1007/s11743-001-0196-y

Matin, M. M., Bhattacharjee, S. C., Chakraborty, P., & Alam M. S. (2019). Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters. Carbohydrate Research, Vol.485, 107812. https://doi.org/10.1016/j.carres.2019.107812

Matin, M. M., Bhuiyan, M. M. H., Azad, A. K. M. S., & Akther, N. (2017). Design and synthesis of benzyl 4-O-lauroyl-α-L-rhamnopyranoside derivatives as antimicrobial agents. Current Chemistry Letters, Vol.6, No.1, 31–40. https://doi.org/10.5267/j.ccl.2016.10.001

Zhao, L., Zhang, H. Y., Hao, T. Y., & Li, S. R. (2015). In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chemistry, Vol.187, 370–377. https://doi.org/10.1016/j.foodchem.2015.04.108

Shao, S-. Y., Shi, Y-. G., Wu, Y., Bian, L-. Q., Zhu, Y-. J., Huang, X-. Y., et al. (2018). Lipase-catalyzed synthesis of sucrose monolaurate and its antibacterial property and mode of action against four pathogenic bacteria. Molecules, Vol.23, e1118. https://doi.org/10.3390/molecules23051118

Matin, M. M., Bhuiyan, M. M. H., Kabir, E., Sanaullah, A. F. M., Rahman, M. A., Hossain, M. E., & Uzzaman, M. (2019). Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. Journal of Molecular Structure, Vol.1195, 189–197. https://doi.org/10.1016/j.molstruc.2019.05.102

Kabir, A. K. M. S., Matin, M. M., Mridha, M. A. U., & Shahed, S. M. (1998). Antifungal activities of some methyl 6-O-trityl-α-D-mannopyranosides. The Chittagong University Journal of Science, Vol.22, No.1, 41–46. ISSN: 1561-1167

Tarahomjoo, S., & Alemzadeh, I. (2003). Surfactant production by an enzymatic method. Enzyme Microb. Technol., Vol.33, 33–37. https://doi.org/10.1016/S0141-0229(03)00085-1

Szüts, A., Pallagi, E., Regdon, G., Aigner, Z., & Révész, P. S-. (2007). Study of thermal behaviour of sugar esters. International Journal of Pharmaceutics, Vol.336, 199–207. https://doi.org/10.1016/j.ijpharm.2006.11.053

Allen, D. K., & Tao, B. Y. (1999). Carbohydrate-alkyl ester derivatives as biosurfactants. Journal of Surfactants Detergents, Vol.2, 383–390. https://doi.org/10.1007/s11743-999-0093-4

Matin, M. M., Chakraborty, P., Alam M. S., Islam, M. M., & Hanee, U. (2020) Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydrate Research, Vol.496, 108130. https://doi.org/10.1016/j.carres.2020.108130

Zaslau, S., Riggs, D. R., Jackson, B. J., Adkins, F. C., John, C. C., Kandzari, S. J., & McFadden, D. W. (2004). In vitro effects of pentosan polysulfate against malignant breast cells. American Journal of Surgery, Vol.188, 589–592. https://doi.org/10.1016/j.amjsurg.2004.07.007

Matin, M. M., Hasan, M. S., Uzzaman, M., Bhuiyan, M. M. H., Kibria, S. M., Hossain, M. E., & Roshid, M. H. O. (2020). Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. Journal of Molecular Structure, Vol.1222, 128821. https://doi.org/10.1016/j.molstruc.2020.128821

Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs natural products and their derivatives. Drug Discovery Today, Vol.21, No.2, 204–207. http://dx.doi.org/10.1016/j.drudis.2015.01.009

Matin, M. M., Roshid, M. H. O., Bhattacharjee, S. C., & Azad, A. K. M. S. (2020). PASS predication, antiviral, in vitro antimicrobial, and ADMET studies of rhamnopyranoside esters. Medical Research Archives, Vol.8, No.7, 2165. https://doi.org/10.18103/mra.v8i7.2165

Kabir, A. K. M. S., Matin, M. M., & Kawsar, S. M. A. (1997). Selective acylation of uridine using the dibutyltin oxide and direct methods. Chittagong University Studies, Part II: Science, Vol.21, No.2, 39–45. ISSN: 0253-5459

Kabir, A. K. M. S., Rahman, M. S., Matin, M. M., Bhuiyan, M. M. R., & Ali, M. (2001). Antimicrobial activities of some D-glucose derivatives. The Chittagong University Journal of Science, Vol.25, No.1, 123–128. ISSN: 1561-1167

Matin, M. M. (2006). Synthesis of some protected 6-O-acyl-galactopyranose derivatives for antibacterial evaluation. The Chittagong University Journal of Science, Vol.30, No.2, 59–65. ISSN: 1561-1167

Laverty, H., Orrling, K. M, Giordanetto, F., et al. (2015). The European lead factory—an experiment in collaborative drug discovery. Journal of Medicines Development Sciences, Vol.1, No.1, 20–33. http://dx.doi.org/10.18063/JMDS.2015.01.009

Islam, F., Rahman, M. R., & Matin, M. M. (2021). The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study. Turkish Computational and Theoretical Chemistry, Vol.5, No.1, 39–50. https://doi.org/10.33435/tcandtc.914768

Awual, M. R., Eldesoky, G. E., Yaita, T., Naushad, M., Shiwaku, H., AlOthman, Z. A., & Suzuki, S. (2015). Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions. Chemical Engineering Journal, Vol.279, 639–647. http://dx.doi.org/10.1016/j.cej.2015.05.049

Kabir, A. K. M. S., Matin, M. M., Bhuiyan, M. M. R., Rahim, M. A., & Rahman, M. S. (2005). Biological evaluation of some monosaccharide derivatives. International Journal of Agriculture & Biology, Vol.7, No.2, 218–221. ISSN: 1560-8530

Rabaan, A. A., Tirupathi, R., Sule, A. A., Aldali, J., Mutair, A. A., et al. (2021). Viral dynamics and real-time RT-PCR Ct values correlation with disease severity in COVID-19. Diagnostics, Vol.11, 1091. https://doi.org/10.3390/diagnostics11061091

Cui, H., Guangli, Y., Yanli, H., Cuijing, X., Lijuan, Z., & Wei, W. (2019). Marine glycan–based antiviral agents in clinical or preclinical trials. Reviews in Medical Virology, Vol.29, No.3, e2043, https://doi.org/10.1002/rmv.2043

Lakshmi, S. A., Beema Shafreen, R. M. B., Priya, A., & Shunmugiah, K. P. (2020). Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. Journal of Biomolecular Structure and Dynamics, 1778537. https://doi.org/10.1080/07391102.2020.1778537

Huang, Y. L., & Wu, C. Y. (2010). Carbohydrate-based vaccines: Challenges and opportunities. Expert Review in Vaccines, Vol.9, 1257–1274. https://doi.org/10.1586/erv.10.120

Oppenheimer, S. B., Alvarez, M., & Nnoli, J. (2008). Carbohydrate based experimental therapeutics for cancer, HIV/AIDS and other diseases. Acta Histochem, Vol.110, 6–13. https://doi.org/10.1016/j.acthis.2007.08.003

Matin, M. M., Uzzaman, M., Chowdhury, S. A., & Bhuiyan, M. M. H. (2020). In vitro antimicrobial, physicochemical, pharmacokinetics, and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1850358

Matin, M. M., Islam, N., Siddika, A., & Bhattacharjee, S. C. (2021). Regioselective synthesis of some rhamnopyranoside esters for PASS predication, and ADMET studies. Journal of the Turkish Chemical Society, Section A: Chemistry, Vol.8, No.1, 363–374. https://doi.org/10.18596/jotcsa.829658

Ali, M., Karim, M. H., & Matin, M. M. (2021). Efficient synthetic technique, PASS predication, and ADMET studies of acylated n-octyl glucopyranosides. Journal of Applied Science & Process Engineering, Vol.8, No.1, 648-659. https://doi.org/10.33736/jaspe.2823.2021

Matin, M. M., & Iqbal, M. Z. (2021). Methyl 4-O-(2-chlorobenzoyl)-α-L-rhamnopyranosides: Synthesis, characterization, and thermodynamic studies. Orbital: The Electronic Journal of Chemistry, Vol.13, No.1, 19–27. http://dx.doi.org/10.17807/orbital.v13i1.1532

Kumbhar, P. S., Pandya, A. K., Manjappa, A. S., Disouza, J. I., & Patravale, V. B. (2021). Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. Carbohydrate Polymer Technologies and Applications, Vol.2, 100052. https://doi.org/10.1016/j.carpta.2021.100052

Felson, D. T., Anderson, J. J., & Meenan, R. F. (1990). The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis results of two metaanalyses. Arthritis & Rheumatism, Vol.33, No.10, 1449–1461. https://doi.org/10.1002/art.1780331001

Alcorn, K. (April 20, 2011). Gold-based drug shows promise in clearing HIV reservoir in monkey study. https://www.aidsmap.com/news/apr-2011/

Marquez, J. R. (April 15, 2020). Georgia state researchers find rheumatoid arthritis drug is effective against coronavirus. Georgia State News Hub, https://news.gsu.edu/2020/04/15/.

Banasch, M., Goetze, O., Khyhala, K., Potthoff, A., Schlottmann, R., Kwiatek, M., Bulut, K., Schmitz, F., & Brockmeyer, N. (2006). Uridine supplementation enhances hepatic mitochondrial function in thymidine-analogue treated HIV-infected patients. AIDS, Vol.20, No.11, 1554–1556. https://doi.org/10.1097/01.aids.0000237373.38939.14

Muhammad, D., Matin, M. M., Miah, S. M. R., & Devi, P. (2021). Synthesis, antimicrobial, and DFT studies of some benzyl 4-O-acyl-α-L-rhamnopyranosides. Orbital: The Electronic Journal of Chemistry, Vol.13, No.3, 250–258. http://dx.doi.org/10.17807/orbital.v13i3.1614

Li, P. L., Zhang, X. K., Cheng, Y. N., Li, J., Xiao, Y., Zhang, Q., Zong, A., Zhong, C., & Wang, F. (2014). Preparation and in vitro immunomodulatory effect of curdlan sulfate. Carbohydrate Polymers, Vol.102, 852–861. http://dx.doi.org/10.1016/j.carbpol.2013.10.078

Kabir, A. K. M. S., Matin, M. M., & Hossain, M. L. (2006). Synthesis and characterization of some mannofuranosides. Ceylon Journal of Science: Physical Sciences, Vol.11, 71–80. ISSN: 1391-1465

Matin, M. M., Bhuiyan, M. M. H., Afrin, A., & Debnath, D. C. (2013). Comparative antimicrobial activities of some monosaccharide and disaccharide acetates. Journal of Scientific Research, Vol.5, No.3, 515–525. http://dx.doi.org/10.3329/jsr.v5i3.15695

Kabir, A. K. M. S., Matin, M. M., & Uddin, M. R. (1998). Comparative studies on selective acylation of uridine using the dibutyltin oxide and direct methods. The Chittagong University Journal of Science, Vol.22, No.1, 97–103. ISSN: 1561-1167

Khairulzaim, A. A. B. M., Rahman, M. R., Roslan, L., Bakri, M. K. B., Khan, A., & Matin, M. M. (2021). Analysis of char prepared by pyrolysis of dabai (Canarium odontophyllum) nutshells as a potential precursor of biocarbon used for wastewater treatment. BioResources, Vol.16, No.3, 5036–5046. https://doi.org/10.15376/biores.16.3.5036-5046

Matin, M. M., Ibrahim, M., & Rahman, M. S. (2008). Antimicrobial evaluation of methyl 4-O-acetyl-α-L-rhamnopyranoside derivatives. The Chittagong University Journal Biological Sciences, Vol.3, No.1&2, 33–43. http://dx.doi.org/10.3329/cujbs.v3i1.13404

Dhavale, D. D., & Matin, M. M. (2004). Selective sulfonylation of 4-C-hyroxymethyl-β-L-threo-pento-1,4-furanose: Synthesis of bicyclic diazasugars. Tetrahedron, Vol.60, No.19, 4275–4281. https://doi.org/10.1016/j.tet.2004.03.034

Islam, N., Islam, M. D., Rahman, M. R., & Matin, M. M. (2021). Octyl 6-O-hexanoyl-β-D-glucopyranosides: Synthesis, PASS, antibacterial, in silico ADMET, and DFT studies. Current Chemistry Letters, Vol.10, No.4, 413–426. https://doi.org/10.5267/j.ccl.2021.5.003

Matin, M. M., Bhuiyan, M. M. H., Debnath, D. C., & Manchur, M. A. (2013). Synthesis and comparative antimicrobial studies of some acylated D-glucofuranose and D-glucopyranose derivatives. International Journal of Biosciences, Vol.3, No.8, 279–287. http://dx.doi.org/10.12692/ijb/3.8.279-287

Matin, M. M., Bhuiyan, M. M. H., & Azad, A. K. M. S. (2013). Synthesis and antimicrobial evaluation of some n-propyl α/β-D-glucopyranoside derivatives. The Chittagong University Journal of Science, Vol.36, 17–27. ISSN: 1561-1167

Matin, M. M., Chowdhury, S. A., Bhuiyan, M. M. H., Kawsar, S. M. A., & Alam, M. A. (2021). Glucopyranoside dipentanoyl esters: Synthesis, PASS predication, antimicrobial and in silico ADMET studies. Journal of Scientific Research, Vol.13, No.1, 221–235. http://dx.doi.org/10.3329/jsr.v13i1.48147

Kabir, A. K. M. S., Matin, M. M., Ali, M., & Anwar, M. N. (2003). Comparative studies on selective acylation and antimicrobial activities of some D-glucofuranose derivatives. Journal of Bangladesh Academy of Sciences, Vol.27, No.1, 43–50. ISSN: 0378-8121

Kabir, A. K. M. S., Matin, M. M., Hossain, M. L., & Anwar, M. N. (2003). Antimicrobial activities of some mannofuranoside derivatives. The Chittagong University Journal of Science, Vol.27, No.1 & 2, 119-124. ISSN: 1561-1167

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., et al. (2013). Gaussian 09W, Revision D.01. Gaussian, Inc., Wallingford CT.

Published
2021-10-31
How to Cite
Islam, N., Roshid, M. H., & Rahaman, M. L. (2021). Chemical Reactivity Descriptors and Molecular Docking Studies of Octyl 6-O-hexanoyl-β-D-glucopyranosides. Journal of Applied Science & Process Engineering, 8(2), 903-912. https://doi.org/10.33736/jaspe.3727.2021