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Abstract 
 
The present study describes different chemical reactivity predictions of 6-O-hexanoylation of octyl β-
D-glucopyranosides prepared from octyl β-D-glucopyranoside (OBG). Also, molecular docking of the 
OBGs was conducted against SARS-CoV-2 main protease (6LU7), urate oxidase (Aspergillus flavus; 
1R51) and glucoamylase (Aspergillus niger; 1KUL). DFT optimization indicated that glucoside 1 and 
its ester derivatives 2-7 exist in 4C1 conformation with C1 symmetry. Interestingly, the addition of ester 
group(s) decreased the HOMO-LUMO gap (Δԑ) of glucosides indicating their good chemical 
reactivities, whereas the other chemical reactivity descriptors indicated their moderate reactive 
nature. This fact of moderate reactivity was confirmed by their molecular docking with 6LU7, 1R51 
and 1KUL. All the esters showed a moderate binding affinity with these three proteins. More 
importantly, incorporation of the ester group(s) increased binding affinity with 6LU7 and 1R51, 
whereas decreased with 1KUL as compared to non-ester OBG 1. 
 
Keywords: COVID-19, DFT, Docking, n-Octyl β-D-glucopyranoside (OBG), Potential drugs, Urate 
oxidase. 
 
 
1. Introduction 
 

To date, researchers have made huge efforts in investigating the roles of carbohydrates and their 
derivatives in different essential biological processes [1-2]. Efforts are continuing to make and 
establish them as safe therapeutic drugs [3-5]. Many esters, known as sugar esters (SEs), are known 
for their multiple surfactants [6,7], and biological properties [8-11]. These are mainly used as non-
ionic type surfactants [6,7]. Different biological properties and applications are reported by many 
researchers [10,11]. The most common structural features of SEs are the combination of hydrophilic 
and hydrophobic parts [12,13]. Hydroxyl group(s) of sugar are contributing to the hydrophilic part and 
aglycon alkyl chain(s) of ester part(s) are contributing as hydrophobic portion [13]. This is the reason 
these SEs bear better stability, and aerobic or anaerobic degradation [14]. Also, the combination of 
hydrophilicity and lipophilicity with reasonable molecular weight are responsible for their low 
stimulatory effects [15]. Most of them are colourless syrup and have no taste in general [10,11]. In 
addition, this hydrophilicity and lipophilicity ratio can be manipulated via changing their hydrophobic 
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chains [16]. Thus, these SEs are important targets for structure-activity relationships related to the 
bioactivities [17] by changing hydrophilicity and lipophilicity ratio. A plethora of effective biological 
activities of SEs supported the above observations [18-23]. 

Despite heavy investments into basic and applied pharmaceutical research and steadily 
increasing public and private efforts the unmet medical need is still considered [24]. In this regard, to 
accelerate drug targets and development of new medicines High Throughput Screening (HTS) has 
been considered [25]. The recent outbreak of a pandemic situation due to COVID-19 (severe acute 
respiratory syndrome coronavirus-2, its different variants) has further created a necessity for related 
potential drugs [26-28]. The outbreak of coronavirus disease (COVID-19) emerged at the end of 2019 
and was caused by a novel enveloped single-strand positive-sense RNA virus. This disease creates 
mild to moderate influenza symptoms and pneumonia with acute respiratory distress syndrome 
(ARDS) and is responsible for multi-organ failure [29]. Four major types of coronaviruses such as 
alpha (α), beta (β), gamma (γ) and delta (δ) are so far reported [30]. Although α- and β-coronaviruses 
are considered pathogenic strains for humans, the other types are found more deadly and responsible 
for the upraise of the death toll [30]. The unavailability of appropriate medicine and vaccine is taking 
a dangerous turn due to this virus. It has been reported that carbohydrate-based several molecules are 
active against SARS-CoV-2 main proteases [31]. Additionally, carbohydrate molecules are very 
important biomolecules used to indicate position, place, or route in the realization of immune systems. 
Some selective polysaccharides and SEs found on the surface of microorganisms and malignant cells 
have defence functions [32]. These polysaccharides can be specifically recognized by the host 
immune system [33] and are thus termed antigens (produce antibodies and boost up the immune 
system). These are the basic strategies behind the design and development of carbohydrate derived 
vaccines [32,33]. Glycochemists and glycobiologists are contributing to the development and 
evaluation of carbohydrate derived vaccines to treat a wide variety of human infections. 

Carbohydrate-based therapeutic replacements could be promising to overcome COVID-19 
creating favourable circumstances [34-37]. In the devising combat strategies, the morphology of 
COVID-19 and its relevance has been discussed. In this respect, many reviews emphasized the 
importance and advantages of carbohydrate-based strategies for diagnosis, treatment, and tackling 
infectious diseases [38]. Tetra-O-acetyl Auranofin (Figure 1) is a glucose-derived metal salt. The 
World Health Organization (WHO) has classified it as an antirheumatic agent. It is applied and sold 
under the brand name Ridaura and is a safer therapeutic compared to the most common related drugs 
[39]. In addition, it is under extended research for the reduction of the HIV viral reservoir present in 
the body's T-cells [40]. Encouragingly, the glucoside ester (Ridaura) may inhibit replication of SARS-
CoV-2 as observed in cell culture with reduced inflammation [41].  

 

Ester  
group 

 
Figure 1. Structure of auranofin (Ridaura). 

 
There is highly convincing evidence that proper molecular modifications of natural 

carbohydrate molecules resulted in the generation of novel bioactivities of the compounds with 
enhanced solubility and pharmacokinetic properties [42-44]. The increasing interest towards the 
process of developing new drug(s) from carbohydrate compounds has been observed currently as 
these compounds display remarkable pharmacological activities and low toxicity [45-50]. Considering 
the prospect of glucopyranoside based esters and the necessity of anti-COVID drugs several 
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hexanoylated octyl β-D-glucopyranosides were subjected for molecular docking with COVID-19 
proteases and the results are discussed here. 
2. Materials and methods 
 
2.1. Materials: Octyl glucosides 1-7 
 

Hexanoyl glucosides 2-7 of n-octyl β-D-glucopyranoside (1) were selected for the present study 
(Figure 2). These compounds were synthesized and duly characterized previously by our group [51] 
using the direct acylation technique [52-56]. 

 

 
Figure 2. Structure of glucopyranosides 1 - 7. 

 
2.2. DFT optimization  
 

Initially, an accurate geometrical structure of n-octyl glucoside 1 was taken from Chemspider. 
The rest of the molecules 2-7 were drawn before optimization in the GaussView (5.0) program [57]. 
All the structures 1-7 were optimized by density function theory (DFT) [56]. B3LYP (Becke, 3-
parameter, Lee-Yang–Parr) method and 6-31G+ basis set were used in the Gaussian 09 program [56]. 
These optimized structures were used for the calculation of their chemical reactivity descriptors and 
molecular docking.  

 
2.3. Calculation of chemical reactivity descriptor  

 
To know the values of chemical reactivity and related descriptors several calculation equations 

were applied in acceptable forms. For example energy gap, Δԑ was calculated as ԑLUMO – ԑHOMO. 
Similarly, ionization potential, I = ˗ԑHOMO; electron affinity, A = ˗ԑLUMO; and electronegativity, χ 
= (I+A)/2. Additionally, chemical potential, µ from ˗(I+A)/2, hardness, ղ = (I-A)/2, and 
electrophilicity, ω = µ2/2ղ. Finally, softness, S was calculated as 1/ղ. 
 
2.4. Method for molecular docking 
   

In an aim to build good data sets, the SDF format of these synthetic compounds (1-7) was saved 
separately after drawing in ChemDraw 18.0. Also, similar formats of ampicillin and 
hydroxychloroquine (HCQ) were saved from PubChem online database. Further, all the SDF files of 
ligands were prepared from DFT optimized structures. 

As the basic target protein of the molecular docking was SARS-CoV-2 main protease and 
fungal organisms, their crystal structures were downloaded from the RCSB protein data bank (PDB 
id: 6LU7, 1R51; and 1KUL). Further, these proteins’ crystal structures were arranged by using the 
protein preparation wizard of Discovery Studio, in which the crystal structure is initially assigned 
proper hydrogen, charges, bond orders, dehydrated and heteroatoms were deleted followed by saved 
as PDB. The proteins were then subjected for energy minimization in Swiss PDB viewer in the 
steepest way. 
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In the PyRx the proteins (macromolecules) and ligands were opened. The ligands after energy 
minimization were converted into PDBQT format. Both the protein and ligands were then forwarded 
for docking with maximum box size in vina wizard. The size of the grid box in AutoDockVina was 
kept at 43.6053, 48.3679, 38.2546 Å for 6LU7; 74.4435, 73.0731, 70.2754 Å for 1r51 and 56.4565, 
44.1349, 52.2576 Å for 1kul along x, y and z directions, respectively. The resulting file was saved and 
further analyzed with the Discovery Studio. 

 
3. Results and discussion 
 
3.1. Optimized structures of 1-7 

 
n-Octyl β-D-glucoside (1) and its hexanoyl derivatives 2-7 are found to exist in the 4C1 chair 

conformation (Figure 3). The symmetry of these compounds was found C1. 
 

 

1 2 

5 

4 

3 

6 

7 

 
Figure 3. Optimized structures of glucopyranosides 1–7 (B3LYP method and 6-31G+). 

 
3.2. Chemical reactivity descriptors 

 
Octyl β-D-glucoside (1) and its esters, as non-toxic in cell-lines, have been widely used for 

membrane protein solubilization. It is also useful for solubilizing enzymes, receptors, and 
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phosphatidylcholine. The chemical descriptors are the general indicators and representations of the 
molecules. The numerical values of these physical and chemical descriptors have a significant 
relationship with their activities, especially biological behaviours. The numerical values of ԑHOMO, 
ԑLUMO, and their energy gap (Δԑ), electron affinity (A), ionization potential (I), chemical potential 
(µ), electronegativity (χ), hardness (ղ), electrophilicity (ω) and softness (S) of glucosides 1-7 are 
presented in Table 1. These data were calculated from their DFT optimized structures. 

It is evident from Table 1 that the addition of ester groups, as in 2-7, had lower HOMO-LUMO 
gap (Δԑ) values as compared to the non-ester glucoside 1. This indicated their better chemical 
reactivities as it is well known that the smaller the energy gap Δԑ the greater the reactivity of a 
molecule. Among the esters, sulfonyl ester 4 showed a maximum HOMO-LUMO gap (7.433 eV). The 
HOMO-LUMO gaps of compounds 4 and 7 are shown in Figure 4 in the form of a DOS plot. Again, 
monohexanoate 2 and sulphonyl ester 4 had a lower electrophilicity index ω than the glucoside 1 and 
fully esterified glucosides (3, 5-7). All the esters (2-7) hardness (η) values are found to be higher than 
the non-ester glucoside 1, and inversely for softness (S). These results indicated the moderate reactive 
nature of esterified glucosides 2-7 (according to the maximum hardness principle). 

 
Table 1. Molecular orbitals (MOs) and reactivity descriptor values of 1-7. 

Mol ԑLUMO  ԑHOMO Δԑ I A µ η χ ω S 
1 1.0250 -7.1239 8.149 7.124 1.025 -4.075 3.050 4.075 2.722 0.328 
2 0.07537 -7.1658 7.241 7.166 0.075 -3.621 3.546 3.621 1.849 0.282 
3 -0.7371 -7.2382 6.501 7.238 0.737 -3.988 3.251 3.988 2.446 0.308 
4 0.25442 -7.1783 7.433 7.178 0.254 -3.717 3.462 3.717 1.995 0.289 
5 -0.6400 -7.1974 6.557 7.197 0.640 -3.919 3.279 3.919 2.342 0.305 
6 -0.6898 -7.2028 6.513 7.203 0.690 -3.947 3.257 3.947 2.392 0.307 
7 -0.6351 -7.1865 6.551 7.187 0.635 -3.911 3.276 3.911 2.335 0.305 

*Mol = molecule; LUMO = lowest unoccupied molecular orbital; HOMO = highest occupied 
molecular orbital; all numerical values are in eV. 
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Figure 4. DOS plot representing HOMO-LUMO gap of the compound- (a) 4, and (b) 7.  

 
3.3. Molecular docking: Anti-COVID and antifungal activities 

 

Molecular docking of the OBGs (1-7) was conducted against SARS-CoV-2 main protease 
(6LU7), urate oxidase (Aspergillus flavus; 1R51), and glucoamylase (Aspergillus niger; 1KUL). The 
docking scores are shown in Table 2. 

Initially, molecular docking was conducted with 6LU7 which is a 2 chain structure with a 
sequence from SARS-CoV-2. It was found that only acetate 3 showed a better binding affinity (-5.8 
kcal/mol) than OBG (-5.5 kcal/mol). However, the binding affinities are almost similar to that of 
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hydroxychloroquine (HCQ, Table 1). It should be noted that the antimalarial drug HCQ was initially 
used to treat COVID-19. 

Table 2. Molecular docking score (binding energy) of 1-7. 

Drugs 
 6LU7 

(kcal/mol) 
1R51 

(kcal/mol) 
1KUL 

(kcal/mol) 
1 -5.5 -5.8 -5.3 
2 -5.2 -5.8 -4.6 
3 -5.8 -6.4 -4.6 
4 -5.5 -5.7 -4.7 
5 -5.1 -5.9 -4.3 
6 -5.4 -6.1 -4.6 
7 -5.0 -5.2 -4.3 

*AMP -7.9 -7.5 -6.2 
*HCQ -5.4 -6.0 -6.1 

AMP = ampicillin; HCQ = hydroxychloroquine; *Standard drug. 
 

In the next step, 1R51 was used for molecular docking which is a 1 chain structure with a 
sequence from a common fungal strain named Aspergillus flavus. Acetate 3 (-6.4 kcal/mol) and 
isovaleroate 6 (-6.1 kcal/mol) showed good binding affinities as compared to the other compounds. 
Their different interactions are shown in Figure 4. The docking score also indicated that these octyl 
glucoside esters are more potent against Aspergillus flavus than the SARS-CoV-2 main protease 
(Table 2). 

 

(a) (b) 

(c) (d) 

 
Figure 5. Docking interactions of 1R51 with compounds- (a) 3 (3D); (b) 3 (3D); (c) 6 (3D); (d) 6 

(2D). 
Finally, molecular docking was conducted with another fungal protein originating from 
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Aspergillus niger (1KUL). It has 1 chain structure and shows a well-defined beta-sheet structure 
consisting of one parallel and six antiparallel pairs of beta-strands which form an open-sided beta-
barrel. As shown in Table 2, the OBG esters 2-7 are moderate inhibitors (4.2-4.7 kcal/mol) of this 
Aspergillus niger protein 1KUL. Also, the addition of the ester group(s) decreased binding affinities 
of OBG (1) with 1KUL, hence these molecules might be less active against Aspergillus niger fungus. 
All these docking results are in conformity with their chemical reactivity descriptors as mentioned 
earlier. 
 
4. Conclusion 
 

Octyl β-D-glucoside, a membrane protein solubilization agent and nonionic detergent, and its six 
hexanoyl esters were investigated for their chemical reactivities and molecular docking 
computationally. Different reactivity parameters like energy gap (Δԑ), ionization potential (I), electron 
affinity (A), electronegativity (χ), hardness (ղ), chemical potential (µ), electrophilicity (ω) and 
softness (S) indicated that these OBG esters have moderate reactivities. Interestingly, molecular 
docking against SARS-CoV-2 main protease (6LU7), and two fungal proteins also supported this 
observation where lower to moderate binding affinities were observed. Overall, a higher HOMO-
LUMO gap may be responsible for moderate predicted biological potentiality. 
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