Preparation and Characterization of Polymer based Electrolytes for Dye-sensitized Solar Cell Application

Authors

  • Faisal I Chowdhury Nanotechnology and Renewable Energy Research Laboratory (NRERL), Department of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh; Center for Ionics University of Malaya, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Zabed Hossain M. School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, People’s Republic of China.
  • M. H. Buraidah Center for Ionics University of Malaya, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • A. K. Arof Center for Ionics University of Malaya, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Jahidul Islam Nanotechnology and Renewable Energy Research Laboratory (NRERL), Department of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh
  • M. Rezaur Rahman Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak
  • Jamal Uddin Center for Nanotechnology, Department of Natural Sciences, Coppin State University, Baltimore, MD, USA

DOI:

https://doi.org/10.33736/jaspe.3254.2021

Keywords:

Gel Polymer Electrolytes (GPEs); Polyacrylonitrile (PAN); Tetrapentylammonium Iodide (TPeAI); Limiting Current Density; Exchange Current Density.

Abstract

A gel-type polymer electrolyte (GPE) composite based on polyacrylonitrile (PAN) conducting polymer plasticized with ethylene carbonate (EC) and propylene carbonate (PC) doped by different compositions of tetrapentylammonium iodide (TPeAI) salt has been prepared and investigated. Electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) techniques have been used to characterize the prepared GPEs. From the EIS study, it has been observed that 30 wt % TPeAIcontaining GPE has the lowest bulk impedance, Rb (32 ohm) and highest room-temperature ionic conductivity (2.4910-3 S cm-1). The conductivity vs temperature diagram in the range of studied temperature studied follows the Arrhenius rule. The values of activation energies, (Ea) are observed to decrease with the increase of the percentage of TPeAI percentage with the lowest values (8.50105 J/mol) for 30% TPeAI containing GPE. From LSV graphs for the GPE systems, various parameters such as the limiting current density (Jlim), the apparent diffusion coefficient of triiodide ion () and exchange current density (J0) have been estimated. The most conducting GPE material shows the highest values of Jlim (3.95 mA.cm-2),  (7.86×10-8cm2 s-1) and J0 (0.46 mA.cm-2). The GPEs will be suitable for application in Dye-sensitized Solar Cell (DSSC).

References

Vittadello, M., Waxman, D. I., Sideris, P. J., Gan, Z.; Vezzù, K., Negro, E., Safari, A., Greenbaum, S. G. & Di Noto, V. (2011). Iodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI 2: Synthesis and structural characterization. Electrochimica Acta, 57, 112-122. https://doi.org/10.1016/j.electacta.2011.07.133

Hsu, H.-L., Tien, C.-F., Yang, Y.-T. & Leu, J. (2013). Dye-sensitized solar cells based on agarose gel electrolytes using allylimidazolium iodides and environmentally benign solvents. Electrochimica Acta, 91, 208-213. https://doi.org/10.1016/j.electacta.2012.12.133

Tiautit, N. & Puratane, C.; Panpinit, S.; Saengsuwan, S. (2014). Effect of SiO 2 and TiO 2 nanoparticles on the performance of dye-sensitized solar cells using PVDF-HFP/PVA gel electrolytes. Energy Procedia, 56, 378-385. https://doi.org/10.1016/j.egypro.2014.07.170

Bhattacharya, B.; Tomar, S. K., Pandey, S. P., Rhee, H. W. & Singh, P. K.. (2012). Porous nanocrystalline TiO2 electrode and poly(N-methyl 4-vinylpyridine iodide): ionic liquid solid polymer electrolyte for device application. International Journal of Nanotechnology 9 (10-12), 1030-1039. https://doi.org/10.1504/IJNT.2012.049464

Singh, V. K., Bhattacharya, B. Shukla, S. & Singh, P. K.. (2015). New solid-polymer-electrolyte material for dye-sensitized solar cells. Materiali in tehnologije 49 (1), 123-127. ISSN 1580-2949

Tan, S.; Zhai, J., Xue, B.; Wan, M.; Meng, Q., Li, Y., Jiang, L. & Zhu, D. (2004). Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir, 20 (7), 2934-2937. https://doi.org/10.1021/la036260m

Nogueira, A., Longo, C. & De Paoli, M.-A. (2004). Polymers in dye sensitized solar cells: overview and perspectives.Coordination Chemistry Reviews, 248 (13), 1455-1468. https://doi.org/10.1016/j.ccr.2004.05.018

Ren, Y.; Zhang, Z., Fang, S., Yang, M. & Cai, S. (2002). Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells. Solar Energy Materials and Solar Cells, 71 (2), 253-259. https://doi.org/10.1016/S0927-0248(01)00084-8

Nogueira, V. C., Longo, C., Nogueira, A. F., Soto-Oviedo, M. A. & De Paoli, M.-A. (2006). Solid-state dye-sensitized solar cell: improved performance and stability using a plasticized polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 181 (2), 226-232. https://doi.org/10.1016/j.jphotochem.2005.11.028

Nogueira, A. F. & De Paoli, M.-A. (2000). A dye sensitized TiO 2 photovoltaic cell constructed with an elastomeric electrolyte. Solar Energy Materials and Solar Cells, 61 (2), 135-141. https://doi.org/10.1016/S0927-0248(99)00106-3

Nogueira, A. F., Durrant, J. R. & De Paoli, M. A. (2001). Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Advanced Materials, 13 (11), 826-830. https://doi.org/10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L

Longo, C. & De Paoli, M.-A. (2003). Dye-sensitized solar cells: a successful combination of materials. Journal of the Brazilian Chemical Society, 14 (6), 898-901. https://doi.org/10.1590/S0103-50532003000600005

Benedetti, J. E. & de Paoli, M. A., Nogueira, A. F. (2008). Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte. Chemical Communications, (9), 1121-1123. https://doi.org/10.1039/B717278H

de Freitas, J. N., de Souza Gonçalves, A., De Paoli, M.-A.; Durrant, J. R. & Nogueira, A. F. (2008). The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. Electrochimica Acta, 53 (24), 7166-7172. https://doi.org/10.1016/j.electacta.2008.05.009

Priya, A. S., Subramania, A., Jung, Y.-S. & Kim, K.-J. (2008). High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF− HFP membrane electrolyte. Langmuir, 24 (17), 9816-9819. https://pubs.acs.org/doi/abs/10.1021/la801375s

Nakade, S., Kanzaki, T., Wada, Y. & Yanagida, S. (2005). Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells: application for highly viscous electrolyte systems. Langmuir, 21 (23), 10803-10807. https://pubs.acs.org/doi/10.1021/la051257j

de Freitas, J. N., Nogueira, A. F. & De Paoli, M.-A. (2009). New insights into dye-sensitized solar cells with polymer electrolytes. Journal of Materials Chemistry, 19 (30), 5279-5294. https://doi.org/10.1039/B900928K

Li, Q., Chen, X. Tang, Q., Cai, H., Qin, Y., He, B., Li, M., Jin, S. & Liu, Z. (2014). Enhanced photovoltaic performances of quasi-solid-state dye-sensitized solar cells using a novel conducting gel electrolyte. Journal of Power Sources, 248, 923-930. https://doi.org/10.1016/j.jpowsour.2013.10.025

Lan, Z.; Wu, J., Lin, J. & Huang, M. (2010). Quasi-solid-state dye-sensitized solar cell based on a polymer gel electrolyte with in situ synthesized ionic conductors. Comptes Rendus Chimie, 13 (11), 1401-1405. https://doi.org/10.1016/j.crci.2010.06.020

Khanmirzaei, M. H., Ramesh, S., & Ramesh, K. (2015). Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Scientific reports, 5(1), 1-7. DOI: 10.1038/srep18056

Hu, P., Chai, J., Duan, Y., Liu, Z., Cui, G., & Chen, L. (2016). Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A, 4(26), 10070-10083. https://doi.org/10.1039/C6TA02907H

Wang, Y. (2009). Recent research progress on polymer electrolytes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 93 (8), 1167-1175. https://doi.org/10.1016/j.solmat.2009.01.009

Jun, H. Careem, M. & Arof, A (2013). Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. Renewable and Sustainable Energy Reviews,22, 148-167. https://doi.org/10.1016/j.rser.2013.01.030

Sharma, G. Daphnomili, D. Angaridis, P. A. Biswas, S. & Coutsolelos, A. (2013). Effect of thiourea incorporation in the electrolyte on the photovoltaic performance of the DSSC sensitized with pyridyl functionalized porphyrin. Electrochimica Acta, 102, 459-465. https://doi.org/10.1016/j.electacta.2013.04.003

Lim, S. J. Kang, Y. S. & Kim, D.-W. (2011). Dye-sensitized solar cells with quasi-solid-state cross-linked polymer electrolytes containing aluminum oxide. Electrochimica Acta 2011,56 (5), 2031-2035. https://doi.org/10.1016/j.electacta.2010.12.027

Bandara, T. M. W. J., Jayasundara, W. J. M. J. S. R. (2013). Dissanayake, M. A. K. L.; Furlani, M.; Albinsson, I. & Mellander, B. E., Effect of cation size on the performance of dye sensitized nanocrystalline TiO2 solar cells based on quasi-solid state PAN electrolytes containing quaternary ammonium iodides. Electrochimica Acta, 109 (Supplement C), 609-616. https://doi.org/10.1016/j.electacta.2013.07.089

Liu, Y., Hagfeldt, A., Xiao, X.-R. & Lindquist, S.-E. (1998). Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and Solar Cells, 55 (3), 267-281. https://doi.org/10.1016/S0927-0248(98)00111-1

Liu, Y., Hagfeldt, A., Xiao, X.-R. & Lindquist, S.-E. (1998). Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO 2 solar cell. Solar Energy Materials and Solar Cells, 55 (3), 267-281. https://doi.org/10.1016/S0927-0248(98)00111-1

Pelet, S., Moser, J.-E. & Grätzel, M. (2000). Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2. The Journal of Physical Chemistry B, 104 (8), 1791-1795. https://doi.org/10.1021/jp9934477

Olson, C. L. (2006). Influence of cation on charge recombination in dye-sensitized TiO2 electrodes. The Journal of Physical Chemistry B, 110 (19), 9619-9626. https://pubs.acs.org/doi/10.1021/jp057383d

Bandara, T. & Svensson, T. (2013). Dissanayake, M.; Furlani, M.; Jayasundara, W.; Fernando, P.; Albinsson, I. & Mellander, B.-E., Conductivity behaviour in novel quasi-solid-state electrolyte based on polyacrylonitrile and tetrahexylammonium iodide intended for dye sensitized solar cells. Journal of the National Science Foundation of Sri Lanka,41 (3). DOI: http://dx.doi.org/10.4038/jnsfsr.v41i3.6056

Ileperuma, O., Dissanayake, M., Somasunderam, S. & Bandara, L.(2004). Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes. Solar Energy Materials and Solar Cells, 84 (1), 117-124. https://doi.org/10.1016/j.solmat.2004.02.040

Ileperuma, O., Dissanayake, M. & Somasundaram, S. (2002). Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes. Electrochimica Acta, 47 (17), 2801-2807. https://doi.org/10.1016/S0013-4686(02)00166-4

Dissanayake, M. A. K. L., Bandara, L. R. A. K., Bokalawala, R. S. P., Jayathilaka, P. A. R. D., Ileperuma, O. A., & Somasundaram, S. (2002). A novel gel polymer electrolyte based on polyacrylonitrile (PAN) and its application in a solar cell. Materials Research Bulletin, 37(5), 867-874. https://doi.org/10.1016/S0025-5408(02)00712-2.

Bandara, T. W. J., Ekanayake, P., Dissanayake, M. L., Albinsson, I., & Mellander, B. E. (2010). A polymer electrolyte containing ionic liquid for possible applications in photoelectrochemical solar cells. Journal of Solid State Electrochemistry, 14(7), 1221-1226. DOI 10.1007/s10008-009-0951-x.

Yun, S. N., Lund, P. D. & Hinsch, A.(2015). Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energ Environ Sci, 8 (12), 3495-3514. DOI: 10.1039/C5EE02446C

Yun, S., Lund, P. D., & Hinsch, A. (2015). Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy & Environmental Science, 8(12), 3495-3514.. DOI: 10.1039/C5EE02446C

Kontos, A. G., Stergiopoulos, T., Likodimos, V., Milliken, D., Desilvesto, H., Tulloch, G., & Falaras, P. (2013). Long-term thermal stability of liquid dye solar cells. The Journal of Physical Chemistry C, 117(17), 8636-8646. https://doi.org/10.1021/jp400060d.

Yun, S., Wu, M., Wang, Y., Shi, J., Lin, X., Hagfeldt, A., & Ma, T. (2013). Pt-like behavior of high-performance counter electrodes prepared from binary tantalum compounds showing high electrocatalytic activity for dye-sensitized solar cells. ChemSusChem, 6(3), 411-416. ISSN:1864-564X. https://doi.org/10.1002/cssc.201200845

Yun, S., Pu, H., Chen, J., Hagfeldt, A., & Ma, T. (2014). Enhanced performance of supported HfO2 counter electrodes for redox couples used in dye‐sensitized solar cells. ChemSusChem, 7(2), 442-450. https://doi.org/10.1002/cssc.201301140

Yun, S., Zhang, H., Pu, H., Chen, J., Hagfeldt, A., & Ma, T. (2013). Metal oxide/carbide/carbon nanocomposites: in situ synthesis, characterization, calculation, and their application as an efficient counter electrode catalyst for dye‐sensitized solar cells. Advanced Energy Materials, 3(11), 1407-1412. https://doi.org/10.1002/aenm.201300242

Wen, T.-C.; Kuo, H.-H. & Gopalan, A. (2002). The influence of lithium ions on molecular interaction and conductivity of composite electrolyte consisting of TPU and PAN. Solid State Ionics, 147 (1), 171-180. https://doi.org/10.1016/S0167-2738(02)00006-1

Kontos, A.; Fardis, M.; Prodromidis, M.; Stergiopoulos, T.; Chatzivasiloglou, E.; Papavassiliou, G. & Falaras, P. (2006). Morphology, ionic diffusion and applicability of novel polymer gel electrolytes with LiI/I 2. Physical Chemistry Chemical Physics, 8 (6), 767-776. https://doi.org/10.1039/B515113A

Zheng, Y.; Huang, Q.; Fang, S.; Yang, L. & Gan, Y. (2013). Ether-functionalized pyrazolium ionic liquids as electrolytes for dye sensitized solar cells. Int J Electrochem Sci, 8, 9558-9567. ISSN 1452-3981

Kim, C.; Lee, G.; Liou, K.; Ryu, K. S.; Kang, S.-G. & Chang, S. H. (2012). Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate. Solid State Ionics 1999,123 (1), 251-257. https://doi.org/10.1016/S0167-2738(99)00119-8

Wu, M., Lin, X., Wang, Y., Wang, L., Guo, W., Qi, D., ... & Ma, T. (2012). Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells. Journal of the American Chemical Society, 134(7), 3419-3428. https://doi.org/10.1021/ja209657v

Papageorgiou, N., Athanassov, Y. Armand, M., Bonho, P., Pettersson, H.; Azam, A. & Grätzel, M. (1996). The performance and stability of ambient temperature molten salts for solar cell applications. Journal of the Electrochemical Society, 143 (10), 3099-3108. https://doi.org/10.1149/1.1837171

Sawyer, D. T., Sobkowiak, A. & Roberts, J. L. (1995. Electrochemistry for chemists. Wiley.

Bard, A. J., Faulkner, L. R., Leddy, J. & Zoski, C. G. (1980). Electrochemical methods: fundamentals and applications. Wiley New York: ISBN 0-471-04372-9

Tai, Q., & Zhao, X. Z. (2014). Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells. Journal of Materials Chemistry A, 2(33), 13207-13218. https://doi.org/10.1039/C4TA01404A

Yun, S., Hagfeldt, A., & Ma, T. (2014). Pt‐free counter electrode for dye‐sensitized solar cells with high efficiency. Advanced Materials, 26(36), 6210-6237. https://doi.org/10.1002/adma.201402056

Listorti, A., O’regan, B., & Durrant, J. R. (2011). Electron transfer dynamics in dye-sensitized solar cells. Chemistry of Materials, 23(15), 3381-3399. https://doi.org/10.1021/cm200651e

Park, C. H.; Kim, D. W.; Prakash, J. & Sun, Y.-K.. (2003). Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics, 159 (1), 111-119. https://doi.org/10.1016/S0167-2738(03)00025-0

Downloads

Published

2021-04-30

How to Cite

I Chowdhury, F., Hossain M. , Z. ., Buraidah, M. H. ., A. K. Arof, Jahidul Islam, Rahman , M. R. ., & Uddin , J. . (2021). Preparation and Characterization of Polymer based Electrolytes for Dye-sensitized Solar Cell Application. Journal of Applied Science &Amp; Process Engineering, 8(1), 750–764. https://doi.org/10.33736/jaspe.3254.2021