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Abstract 
 
A gel-type polymer electrolyte (GPE) composite based on polyacrylonitrile (PAN) conducting polymer 
plasticized with ethylene carbonate (EC) and propylene carbonate (PC) doped by different 
compositions of tetrapentylammonium iodide (TPeAI) salt has been prepared and investigated. 
Electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) techniques have 
been used to characterize the prepared GPEs. From the EIS study, it has been observed that 30 wt % 
TPeAIcontaining GPE has the lowest bulk impedance, Rb (32 ohm) and highest room-temperature 
ionic conductivity (2.49 10-3 S cm-1). The conductivity vs temperature diagram in the range of studied 
temperature studied follows the Arrhenius rule. The values of activation energies, (Ea) are observed to 
decrease with the increase of the percentage of TPeAI percentage with the lowest values (8.50 105 
J/mol) for 30% TPeAI containing GPE. From LSV graphs for the GPE systems, various parameters 
such as the limiting current density (Jlim), the apparent diffusion coefficient of triiodide ion ( ) and 
exchange current density (J0) have been estimated. The most conducting GPE material shows the 
highest values of Jlim (3.95 mA.cm-2),  (7.86×10-8cm2 s-1) and J0 (0.46 mA.cm-2). The GPEs will be 
suitable for application in Dye-sensitized Solar Cell (DSSC). 
 
Keywords: Gel Polymer Electrolytes (GPEs); Polyacrylonitrile (PAN); Tetrapentylammonium Iodide 
(TPeAI); Limiting Current Density; Exchange Current Density. 

 
 
 
 
 



Journal of Applied Science & Process Engineering 
Vol. 8, No. 1, 2021 

 

 
 
e-ISSN: 2289-7771 

 

 
 751  

1. Introduction 
 
The properties of electrolyte play a very important role to optimize the performance and 

stability of various electrochemical devices such as dye-sensitized solar cells (DSSCs). Even though 
the liquid type of electrolytes such as an aqueous solution of salts are considered the best for the 
highest efficiency in DSSCs, they have some shortcomings due to evaporation, leakages, desorption 
and secondary electrode corrosion [1-3]. To replace the liquid electrolytes, the alternatives including 
the all-solid, quasi-solid and ionic liquid electrolytes have been tried for various electrochemical 
devices [4-15].  

The solid-state blend materials prepared with conducting polymers and ionizing salt may show 
considerable conductivity, but their increased viscosity restricts ionic transportation through the solid 
polymer electrolytes (SPEs) [16] and inadequate filling of the electrolyte into the nanoporous titanium 
photoelectrode [17] lower the values of current, fill factor, and efficiency in comparison with the 
DSSC fabricated with liquid electrolytes.  

Due to the deficiencies of liquid electrolytes and solid electrolytes, scientists have discovered 
the gel polymer electrolytes or quasi-solid type of electrolytes that can be a potential alternative for 
DSSC as they have considerably high electrical conductivity and excellent long term stability [19-20]. 
The Gel polymer electrolytes (GPEs) can be prepared by blending polymer host, solvents, mobile ion 
supplier and some other additives/plasticizers homogeneously. In the GPEs systems, a significantly 
large amount of organic solvent and plasticizers (such as EC/PC) can be trapped inside the polymer 
matrix that may compensate for solvent leakage and evaporation problems. In comparison with the 
SPEs, GPEs have better filling properties and contact with the electrodes [21], high ionic conductivity 
[22], reasonable high photovoltaic performances and high thermal and mechanical stability [23]. The 
plasticizer decreases the glass transition temperature of the electrolyte by incorporating disorders in 
the crystalline phase of the polymer results increased segmental mobility and free volume of the 
system 7. Though GPEs have some attractive properties still they have some limitations. According to 
some studies, it has been found that the transportation of charge carriers are hindered by the polymer 
network inside the polymer composite matrix and the reaction of gelators with the electrolyte 
compounds which causes low performance of the GPEs [24-26]. 

To prepare DSSC electrolytes, iodide salts are essential for the formation of the triiodide/iodide 
redox couple which is vital for DSSC operation. The photovoltaic cell performance depends on the 
concentration of the salt as well as the size and charge density of the cations. Bandara et al. [27] 
reported that the conductivity increases with decreasing size of the cation at a given temperature. 
However, the photocurrent decreases and the photo-voltage increases with increasing the radius of the 
cations [28].  

The cations are adsorbed onto TiO2 electrode surface or intercalated into the TiO2 lattice for the 
compensation of charge of accumulated electrons accumulate in the conduction band of nanoporous 
TiO2 electrode. The nature of the adsorbed ions causes the potential drop in the Helmholtz layer 
causing variation in potentials for different cations at the conduction band edge, Vcb of the 
TiO2photoanode which decreases with increasing the cationradious28 resulting in the increase of Eredox-
Ecb. That is why photovoltage increases with increasing cationradious28. This is because the cation 
nature influences the conduction band energy (Ec) of the TiO2 and the associated electron injection 
efficiency [29]. Moreover, it has been observed by the researchers [30-31] that the dye regeneration is 
speeded up by smaller cations (Li+, Na+, Mg2+). Once more, it has been revealed that iodide ion 
conductivity is governed by the size of the cation of the electrolyte salt. According to several reports, 
larger cations enhance the mobility of iodide anion resulting in better DSSC performance [32-33].  

Though there are some reports [30-33]  have been made on the study of the effect of cation size 
on cell performance, still, it is not clear the role of quaternary ammonium iodide salt in the operational 
mechanism of DSSC. Also, there is no data on the particular GPE systems based on TPeAI such as 
PAN-EC-PC-TPeAI-I2 for the application in electrochemical devices, especially in DSSCs. To fill this 
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research gap the present unique study reports the synthesis and electrochemical characterization of 
PAN-EC-PC-TPeAI-I2 GPEs. 

 
2. Reseach method 
 
2.1 Materials 

 
The chemicals such as: polyacrilonitrile (PAN), ethylene carbonate (EC), propylene carbonate 

(PC), tetrapentylammonium iodide (TPeAI), iodine (I2) have been purchased from Aldrich. The purity 
of these materials is more than 98%. These chemicals were used as starting materials. Table 1 shows 
the chemical structures of PAN, EC, PC and TPeAI. Prior to using PAN and TPeAI were vacuum 
dried for 24 h at 50°C in a vacuum oven. Other materials were used as received.  

 
Table 1.Chemical structures of PAN, EC, PC and TPeAI 

Chemicals Chemical formula Chemical structures Company 

Polyacrylonitrile 
(PAN) 

[-CH2-CH(CN)-]n 

 

Sigma-
Aldrich 

Ethylene carbonate 
(EC) 

(CH2O)2CO O

O O
 

Sigma-
Aldrich 

Propylene carbonate 
(PC) 

CH3C2H3O2CO O

O O

CH3 

Sigma-
Aldrich 

Tetrapentylammoniu
m iodide (TPeAI) 
 

(CH3CH2CH2CH2CH2)4
+I- 

N+

CH3

CH3

CH3

CH3

 

Sigma-
Aldrich 

 
 
2.2 Preparation of gel polymer electrolyte (GPE) 

 
Polyacrylonitrile (PAN) polymer was gelatinized by heating and stirring with EC and PC as 

solvent/plasticizer to produce GPEs. Crystalline TPeAI salt and I2 was added to produce the redox I-

/I3
- redox shuttle. The composition/weight of different components in the GPEs is displayed in Table 

2. The weights ratio of PAN, EC and PC 3:11:11, respectively. The EC and PC were mixed together 
and stirred in a glass bottle and heated at about 110-120°C. PAN polymer was then added with 
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continued stirring and heating. After the formation of a homogenous solution, TPeAI salt was added 
to the solution and stirred. For providing I−/I3

− redox mediator, an appropriate amount of I2 was added 
to the mixture after cooling to room temperature (RT). The stirring was continued to get a 
homogenous and gelatinized mixture. The sample was kept undisturbed for gel formation. After the 
formation of final GPEs, they were used for further characterization. 

 
Table 2.Compositions of PAN-based GPEs 

 

% TPeAI PAN (g) EC (g) PC (g) TPeAI (g) I2 (g) 
10      0.51 1.92 1.92 0.50 0.034 
20 0.35 1.30 1.30 0.75 0.052 
30 0.27 1.02 1.02 1.00 0.069 
40 0.22 0.84 0.84 1.25 0.086 

 
2.3 Characterization 
 

2.3.1 Electrochemical impedance spectroscopy (EIS) 
 
For the determination of electrical conductivity, the impedance for (100-x)(PAN-EC-

PC)+xTPeAI+yI2GPEs was investigated using the HIOKI 3532-50 LCR Hi-Tester electrochemical 
impedance spectroscopy. The impedance was measured from 50 Hz to 1 MHz from room temperature 
(RT) at 25°C to 100°C. The compositions stated above were x = 10wt%, 20wt%, 30wt% and 40wt% 
and y was the estimated amount of I2 (10 mol % I2). A voltage of 10 mV was applied across the 
sample. GPEs with a diameter of 2 cm and thickness ∼ of 0.25cm was sandwiched between two 
stainless-steel electrodes. Nyquist plots were constructed by plotting negative imaginary impedance 
vs. real impedance. The bulk resistance of GPE, Rb was determined at the real impedance axis where 
the Nyquist plot intercepted. The ionic conductivity, σ, of the samples with sample thickness, t and 
area, A was calculated from the following equation [43]:  

…………………………………………………...………………………..(1) 

Here, t is the sample thickness and A is the electrode-electrolyte contact area. 
 
2.3.2 Linear sweep voltammetry: Diffusion coefficient of I3¯ 

 
The technique was applied to the measure apparent The triiodide ion (I3ˉ) diffusion coefficient 

( ) was estimated using the linear sweep voltammetry (LSV) data. A dummy cell with a 
symmetrical thin-layer constructed with two platinized counter electrodes [44-45] having 53 
µm thickness was used for measuring limiting current (steady state current) density. The applied 
sweep voltage was in between - 0.5V and 0.5V with a scan rate of 10 mV/s. The  was determined 
by measuring the diffusion-limited current, Jlim. 

The chemical reactions inside the Pt/electrolyte/Pt electrochemical cell due to the application of 
potential are as: 

 
I3ˉ + 2e →3Iˉ (reduction) ………………………………………..(2) 
3Iˉ − 2e →I3ˉ (oxidation)) ………………………………………..(3) 
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3 Results and discussion 
 
3.1 EIS analysis 
 
3.1.1 Ionic conductivity measurements 
 

The Nyquist plots for all the PAN-EC-PC-TPeAI-I2 GPEs at various temperatures are presented 
in Figure 1. All the plots show a large spike (Fig. 1 (ii-vi), respectively. The value of Rb and σ for the 
GPEs are listed in Table 3. The vales of Rb decrease with an increase in TPeAI salt concentration 
showing the lowest value of 30 Ω at 30 wt% TPeAI containing GPE. 

The conductivity values (σ) for all the systems are presented in Figures 1-4 as a function of 
TPeAI concentrations in which it is evident that the σ goes down with the increase in TPeAI 
concentrations, reached the highest value of 2.49 10-3 (S/cm) at 30% TPeAI followed by decrement 
with the addition of more salt. This is because ion recombination may be happened after a certain salt 
concentration due to the lowering of ionic distance in the GPEs. 

 
Figure 1. Niquest plot for the PAN-EC-PC-TPeAI-I2 GPE with10 wt % salt. 
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Figure 2. Niquest plot for the PAN-EC-PC-TPeAI-I2 GPE with20 wt % salt. 

 

 
Figure 3. Niquest plot for the PAN-EC-PC-TPeAI-I2 GPE with 30 wt % salt. 
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Figure 4. Niquest plot for the PAN-EC-PC-TPeAI-I2 GPE with 40 wt % salt. 

 
3.1.2 The activation energy for ion conduction 
 

In Figure 5, lnσ versus 1000/T plots are presented respectively for the different amount of salt-
containing GPEs. All the lnσ versus 1000/T plots show Arrhenius type equation that can be 
graphically presented as: 
 
 …………………………………………..(4) 

 
Here,  stands for electrical conductivity, Ea activation energy, R molar gas constant, T absolute 

temperature and C the pre-exponential factor. The slops of  vs. 1000/T graphs (Figure 2) give 
activation energy for ion transportation, Ea which is shown in Table 3. The lowest activation energy 
was observed for 30 wt% TPeAI containing GPE which has the highest ionic conductivity. The lowest 
activation energy for ion conduction confirmed the minimum energy barrier for ion transportation 
through the GPE electrolyte matrix. 
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Figure 5.Conductivity (σ×104 (S/cm)) versus temperature (T/K). 

 
 

Table 3. Bulk impedance, conductivity and activation energy for the GPEs with different TPeAI 
percentage. 

 
t/°C 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 

10 % TPeMAI 
Rb (ohm) 48.60 42.90 37.66 33.60 29.20 25.00 22.00 20.40 

σ 10-3(S/cm) 1.64 1.85 2.11 2.37 2.73 3.20 3.62 3.91 
Ea 105 (J/mol) 12.11 

20 % TPeMAI 
Rb (ohm) 40.00 37.00 34.00 31.00 27.00 24.00 22.00 20.00 

σ 10-3(S/cm) 1.99 2.15 2.34 2.57 2.95 3.32 3.62 3.98 
Ea 105 (J/mol) 9.63 

30 % TPeMAI 
Rb (ohm) 32.00 29.00 26.00 25.00 22.00 20.00 18.00 16.00 

σ 10-3(S/cm) 2.49 2.74 3.06 3.18 3.57 3.99 4.39 4.97 
Ea 105 (J/mol) 8.50 

40 % TPeMAI 
Rb (ohm) 38.00 35.45 32.50 28.40 25.60 22.00 19.30 17.00 

σ 10-3(S/cm) 2.09 2.24 2.45 2.80 3.11 3.60 4.12 4.68 
Ea 105 (J/mol) 10.47 
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3.2 Linear sweep voltammetry (LSV) experiment 
 
3.2.1 Limiting current and I3¯ Diffusion coefficient study 

 
Linear sweep voltammetry (LSV) is a potential technique to characterize the GPEs in terms of 

electrocatalytic activity on the Pt-counter electrodes [47]. Figure 6represents the characteristic LSV 
curves for the GPEs systems containing different compositions of TPeAI. The saturated current 
densities have been reached in both polarities at above 0.3 V. All the curves for the anodic and 
cathodic limiting current plateaus are quite similar indicating the equilibrium steady-state conditions. 
It is to be noted that the triiodide ion percentage is higher than I2 percentage as iodide concentration is 
taken greater than the amount of I2 taken [48]. That is why the limiting current densities (Jlim) is used 
to determine the apparent diffusion coefficient of triiodide ions (  according to the following 
relation (Eq. 5): 

 

……………………………………………………………..(5) 

 
where n = 2 is the electron number required for the reduction of triiodide to iodide, C0 is the 

initial concentration of the triiodide ions which is equivalent to the I2 concentration in mol/cc unit, d is 
the thickness of the cell (53 µm) and F is the Faraday constant (96485.33 coulombs /mol).  

The Jlim and  values for TPeAI containing GPE systems are tabulated in Table 4. The 
limiting current density is observed highest 3.95 mA cm-2 among other GPEs. The value  has been 
observed to increase with the increase of I2 content and has been found highest of 8.36×10-8cm2 s-1 for 
0.069 (g) I2 containing electrolyte with TPeAI = 30 wt %. The values  decreased with the addition 
of more I2. Similar behaviour was also observed for the conductivity of these electrolytes. More I2 can 
produce more I3ˉ ions which may cause ion aggregation and/or micellization and results in a lower 
diffusion rate of I3ˉ ions. In addition, more salt provides more ions in the electrolyte that reduced the 
volume of free space and hindered I3ˉ diffusion. 

 
 

 
 
 

Figure 6. Linear sweep voltammograms (LSV) of GPEs at varying concentration of TPeAI with 
Ptultramicroelectrode. Scan rate: 10 mV/s. 
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3.2.2 Tafel polarization curve and Exchange current density, J0 
 

The exchange current density, J0 can be defined as the current in absence of net electrolysis and 
at zero overpotential. From the Tafel polarization curves, the exchange current density, J0 for all the 
four GPEs was calculated. This parameter is the intrinsic rates of electron transfer between an analyte 
(electrolyte) and the electrode [49]. The  LSV data was used to plot logarithmic current-voltage (Log 
J-V) Tafel polarization curves (Figure 4) [50].Tafel curves are divided into three zones: (1) 
polarization region (V< 120 mV, (2) Tafel zone (120 mV < 400 mV) and (3) diffusion zone (V > 400 
mV) [50] as shown in Figure 7. By extrapolating the anodic or cathodic curves in its Tafel zone and 
the cross point at 0 V, J0 has been obtained and summarized in Table 4. The values of J0 are rising 
with the increase of TPeAI concentration attaining the highest value (0.46mA cm-2) at 30 % TPeAI 
containing GPE and then decreases with further addition of the salt. The highest J0 value indicates the 
best current/charge transferring ability as well as the minimum over potential among the GPEs. The 
high rate of I3

– ion consumption indicates the high exchange current which is the source of less energy 
loss resulting in good electrode-electrolyte catalytic activity and better cell performance because of 
the electro-catalytic reduction of triiodide ions (I3

–) on the surface of a CE is a rate-determining step in 
a DSSC [51-53]. The GPE with 30 % TPeAI has the optimum I2concetration that ensures the best I-/I3

- 
electro-catalytic performance on Pt-counter electrode among the four GPEs. This performance is 
radically decreased if more iodine is added due to the formation of poly-iodides and ion aggregation. 
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Figure 7.Tafel polarization curves for the electrolytes with different TPeAI containing GPEs.  

 
 

Table 4.Limiting current or steady state current density (Jlim), diffusion coefficients of I3
ˉ ion ( ), 

exchange current density (J0) of GPEs containing different composition of iodine.  
 

TPeAI 10% 20% 30% 40% 
I2 (g) 0.034 0.052 0.069 0.086 
Jlim (mA cm-2) 1.63 2.67 3.95 1.95 

 (× 10-8cm2 s-1) 5.93 6.13 7.86 2.78 
J0, Tafel (mA cm-2) 0.18 0.28 0.46 0.19 
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4 Conclusion 
 

From EIS experimental data it has been observed that the GPE containing 30% TPeAI has the 
lowest bulk impedance (32 Ω) and highest ionic conductivity (2.49 × 10−3 S cm−1). We have also 
measured the effect of temperature on ionic conductivity which reveals that all conductivity versus 
temperature relationships follow the Arrhenius thermal activated model. From the slope of Arrhenius 
plots, the activation energy for ion conduction (Ea) has been estimated which is found as low as 
8.50 105 J/mol in the 30wt% TPeAI containing GPEs. Using LSV data, Jlim, J0and have calculated 
and found maximum values of 3.95 mA.cm-2, 7.86×10-8cm2 s-1and 0.46 mA.cm-2, respectively for 
GPE containing with 30 %. The optimized GPEs will be further used to fabricate DSSC in order to 
examine the cell efficiency with these GPEs.  
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