Hybrid Block Method for Numerical Solution of First Order Ordinary Differential Equations

Authors

  • Ibrahim Mohammed Dibal Department of General Studies, School of General and Remedial Studies, Federal Polytechnic Damaturu, Yobe State. Nigeria.
  • Yeak Su Hoe Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru. Malaysia.

DOI:

https://doi.org/10.33736/jaspe.10889.2025

Keywords:

Hybrid block method, zero stability, Intra-step points, Initial value problem

Abstract

This research introduces a novel single-step hybrid block method with four intra-step points that attains six-order accuracy, ensures A-stability, consistency, and convergence, and provides an efficient, accurate, and computationally economical tool for solving first-order ordinary differential equations. The formulation incorporates interpolation techniques to approximate function values at points where terms are not explicitly defined on the computational grid. In addition to the construction of the scheme, the paper rigorously investigates its theoretical properties. The results obtained show that the method not only achieves high accuracy but also performs competitively when compared with other established numerical techniques reported in the literature.

 

References

Shampine, L. F., & Watts, H. A. (1969). Block implicit one-step methods. Mathematics of Computation, 23(108), 731-740. http://dx.doi.org/10.1090/S0025-5718-1969-0264854-5

Gear, C. W. (1965). Hybrid methods for initial value problems in ordinary differential equations. Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(1), 69-86. doi: 102.90.43.100

Motsa, S. (2022). Overlapping grid-based optimized single-step hybrid block method for solving first-order initial value problems. Algorithms, 15(11), 427. doi: 10.3390/a15110427.

Shateyi, S. (2023). On the application of the block hybrid methods to solve linear and non-linear first order differential equations. Axioms, 12(2), 189.

Bisheh-Niasar, M., & Ramos, H. (2025). A computational block method with five hybrid-points for differential equations containing a piece-wise constant delay. Differential Equations and Dynamical Systems, 33(1), 1-14. doi: 10.1007/s12591-022-00624-9.

Tassaddiq, A., Qureshi, S., Soomro, A., Hincal, E., & Shaikh, A. A. (2022). A new continuous hybrid block method with one optimal intrastep point through interpolation and collocation. Fixed Point Theory and Algorithms for Sciences and Engineering, 2022(1), 22. doi: 10.1186/s13663-022-00733-8.

Rufai, M. A., Carpentieri, B., & Ramos, H. (2023). A new hybrid block method for solving first-order differential system models in applied sciences and engineering. Fractal and Fractional, 7(10), 703. https://doi.org/10.3390/fractalfract7100703

Henrici, P. (1962). Discrete variable methods in ordinary differential equations. John Wiley Sons, New York: Wiley. doi: http://dx.doi.org/10.1002/zamm.19660460521

Dhandapani, P. B., Baleanu, D., Thippan, J., & Sivakumar, V. (2019). Fuzzy type RK4 solutions to fuzzy hybrid retarded delay differential equations. Frontiers in Physics, 7, 168. doi: 10.3389/fphy.2019.00168.

Rosli, N., Ariffin, N. A. N., Hoe, Y. S., & Bahar, A. (2019, March). Stability Analysis of Explicit and Semi-implicit Euler Methods for Solving Stochastic Delay Differential Equations. In Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) Transcending Boundaries, Embracing Multidisciplinary Diversities (pp. 179-186). Singapore: Springer Singapore. doi: 10.1007/978-981-13-7279-7_22.

Duromola, M. K., Momoh, A. L., & Akinmoladun, O. M. (2022). Block extension of a single-step hybrid multistep method for directly solving fourth-order initial value problems. American Journal of Computational Mathematics, 12(4), 355-371. doi: 10.4236/ajcm.2022.124026.

Obarhua, F. O. (2023). Three-step Four-point Optimized Hybrid Block Method for Direct Solution of General Third Order Differential Equations. Asian Research Journal of Mathematics, 19(6), 25-44. doi: 10.9734/arjom/2023/v19i6664.

Jimoh, A. K. (2024). Two-step hybrid block method for solving second order initial value problem of ordinary differential equations. Earthline Journal of Mathematical Sciences, 14(5), 1047-1065. doi: 10.34198/ejms.14524.10471065.

Alemu Wendimu, A., Matušů, R., Gazdoš, F., & Shaikh, I. (2025). A Comparative Study of One‐Step and Multi‐Step Numerical Methods for Solving Ordinary Differential Equations in Water Tank Drainage Systems. Engineering Reports, 7(3), e70080. doi: 10.1002/eng2.70080.

Hoang, M. T., & Ehrhardt, M. (2024). A general class of second-order L-stable explicit numerical methods for stiff problems. Applied Mathematics Letters, 149, 108897. doi: 10.1016/j.aml.2023.108897.

Nwaigwe, C., & Atangana, A. (2025). Fourth-order predictor-corrector method for initial value ordinary differential equation problems. Numerical Algorithms, 1-34. doi: 10.1007/s11075-025-02043-7.

Al-towaiq, M. (2023). Improved predictor-corrector method for the initial-value problem, Journal of Propulsion Technology, 44(6), 5832–5838, 2023. ISSN: 1001-4055

Senu, N., Lee, K. C., Wan Ismail, W. F., Ahmadian, A., Ibrahim, S. N., & Laham, M. (2021). Improved Runge-Kutta method with trigonometrically-fitting technique for solving oscillatory problem. Malaysian Journal of Mathematical Sciences, 15(2), 253-266. https://einspem.upm.edu.my/journal

Abdulkarimova, A. R. (2025). On some comparison the methods of runge-kutta and multi-step types, Int. J. Eng. Sci. Technol., 9(2), 103–109. doi: 10.29121/ijoest.v9.i2.2025.670.

Lambert, J.D. (1974). Computational methods in ordinary differential equations, J. Appl. Math. Mech., 54(7), 523–523. doi: https://doi.org/10.1002/zamm.19740540726.

Dahlquist, G.G. (1963). A special stability problem for linear multistep methods, Bit, 3(1), 27–43. doi: 10.1007/BF01963532.

Wang, L., Wang, F.& Y. Cao, Y. (2019). A hybrid collocation method for fractional initial value problems, J. Integr. Equations Appl., 31(1), 105–129. doi: 10.1216/JIE-2019-31-1-105.

Ramos, H., Qureshi, S. & Soomro, A.(2021). Adaptive step-size approach for Simpson’s-type block methods with time efficiency and order stars, Comput. Appl. Math., 40(6), 219. doi: 10.1007/s40314-021-01605-4.

H. Soomro,H, Zainuddin, N., Daud, H. &. Sunday, J. (2022). Optimized hybrid block Adams method for solving first order ordinary differential equations, Comput. Mater. Contin., 72(2). 2947–2961. doi: 10.32604/cmc.2022.025933.

Areo, E. A., & Adeniyi, R. B. (2014). Block implicit one-step method for the numerical integration of initial value problems in ordinary differential equations. International Journal of Mathematics and Statistics Studies, 2(3), 4-13. Available: www.ea-journals.org

Qayyum, M., & Fatima, Q. (2022). Solutions of stiff systems of ordinary differential equations using residual power series method. Journal of Mathematics, 2022(1), 7887136. doi: 10.1155/2022/7887136

Singh, G., Garg, A., Kanwar, V., & Ramos, H. (2019). An efficient optimized adaptive step-size hybrid block method for integrating differential systems. Applied Mathematics and computation, 362, 124567. doi: 10.1016/j.amc.2019.124567.

August, N. (2025). Adaptive Nonlinear Numerical Method for Coupled Nonlinear IVP Systems: Theory, Experiments, and Error Analysis. Journal of Computational Mathematics and Engineering, 2(3), 3–5

Omar, A. (2016). Hybrid Block Collocation–Interpolation Method for Stiff Problems: Sixth-Order Example. IOSR Journal of Mathematics, 12(5), 1–3

Downloads

Published

2025-10-31

How to Cite

Mohammed Dibal, I. ., & Yeak, S. H. (2025). Hybrid Block Method for Numerical Solution of First Order Ordinary Differential Equations . Journal of Applied Science &Amp; Process Engineering, 12(2), 161–183. https://doi.org/10.33736/jaspe.10889.2025