Journal of Applied Science & Process Engineering
Vol. 12, No. 2, 2025

Hybrid Block Method for Numerical Solution of First Order Ordinary
Differential Equations

lbrahim Mohammed Dibal®" and Yeak Su Hoe®
aDepartment of General Studies, School of General and Remedial Studies, Federal
Polytechnic Damaturu, Yobe State. Nigeria.
bDepartment of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia,
81310 Skudai, Johor Bahru. Malaysia.

Abstract

This research introduces a novel single-step hybrid block method with four intra-step points that
attains six-order accuracy, ensures A-stability, consistency, and convergence, and provides an
efficient, accurate, and computationally economical tool for solving first-order ordinary differential
equations. The formulation incorporates interpolation techniques to approximate function values at
points where terms are not explicitly defined on the computational grid. In addition to the construction
of the scheme, the paper rigorously investigates its theoretical properties. The results obtained show
that the method not only achieves high accuracy but also performs competitively when compared with
other established numerical techniques reported in the literature.
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1. Introduction

Block hybrid methods are numerical schemes that integrate linear multistep techniques with
power series representations through interpolation, and were initially introduced by [1]. These
methods introduce an extra interpolation point at each step of the formula, thereby increasing the
accuracy of differential equation solutions and contributing to improved convergence rates. Since the
pioneering work by [2], block methods have attracted significant interest in the literature because of
their proven effectiveness in solving both initial value problems (IVPs) and boundary value problems
(BVPs), attributed to their flexibility, high accuracy, and computational efficiency in handling
complex systems. [3] introduced a hybrid overlapping grid block method that combines equally spaced
and optimally chosen grid points for the efficient solution of both linear and nonlinear first-order
initial value problems (I\VVPs). Similarly, [4] applied a block hybrid method with equally spaced grid
points to address both linear and nonlinear first-order I\VPs, demonstrating convergence rates that
surpassed those of the classical fourth-order Runge—Kutta method. [5] developed an efficient five-
point hybrid block method, adapted from ODE solvers and enhanced through interpolation to manage
piecewise constant delays in first-order differential equations. The method was formulated as a single-
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step implicit block scheme with three intra-step grid points, optimized to minimize local truncation
error while maintaining low computational cost, as well as ensuring consistency, stability, and
convergence. [6]. [7] proposed a hybrid block method in variable step-size mode for the solution of
first-order initial value problems of ODEs. These hybrid methods provide notable advantages, such as
adaptive step-size control, the use of information from off-step points, and, most importantly, the
ability to surpass the Dahlquist barrier of zero stability [8]. Recently, however, a number of
researchers, including [9], [10], [11], [12], and [13] have been emphasizing the development of single-
step hybrid block methods. Single-step and multi-step numerical methods for solving ordinary
differential equations in water tank drainage systems have been compared in terms of accuracy,
stability, computational efficiency, and optimal step size [14]. A simple approach for constructing a
general class of A-stable explicit second-order one-step methods for stiff problems, inspired by
Mickens’ nonstandard finite difference methodology, was presented [15]. A fourth-order accurate and
efficient predictor—corrector method for solving initial value problems of ordinary differential
equations was introduced, developed through integral transformation and numerical quadrature
techniques [16]. A predictor-corrector scheme based on a semi-open and closed-Cotes quadrature
process for solving initial value problems of ordinary differential equations was also proposed [17]. A
third-order, three-stage Trigonometrically-Fitted Improved Runge-Kutta (TFIRK3(3)) method for
solving oscillatory ordinary differential equations was developed [18]. Finally, an examination of the
Runge-Kutta and Multistep methods for solving initial-value problems highlighted their strengths and
limitations, and recommended the development of hybrid methods that combine the properties of both
classes [19]. In his work, [20] presented a comprehensive treatment of computational methods in
ODEs, emphasizing the practical aspects of stability, convergence, and error control in linear multistep
and one-step schemes. [21] focused specifically on a special stability problem for linear multistep
methods.

The adoption of single-step hybrid block methods has gained significant attention in numerical

analysis due to their balance between simplicity, stability, and computational efficiency. These
methods are particularly attractive because they require less derivation effort and produce algorithms
that are straightforward to implement on digital computers, thereby minimizing sources of numerical
error. Moreover, their strong stability properties resulting from fixed-step discretization allow for the
use of smaller step sizes without considerable error amplification from perturbations, making them
reliable for solving a wide range of ordinary differential equations (ODEs) [22]. In terms of
computational complexity, single-step hybrid block methods generally demand fewer arithmetic
operations per step compared to multi-step or predictor—corrector schemes, leading to faster execution
times and lower memory usage. This efficiency is especially beneficial when solving large systems or
stiff problems where stability and accuracy must be maintained over many iterations. Despite these
advantages, ongoing research continues to propose improved block methods aimed at achieving
higher-order accuracy and enhanced stability, further reducing computational errors relative to existing
techniques. In this context, the present study applies a hybrid block method to the solution of first-
order ordinary differential equations of the form;

y' == y(x) = f(x,3),5(0) = yo. x € [a, b]. (1)

Note that t, = a << t;, < - < t,_, < a denotes a set of equally spaced points in the
interval [a, b], where t; =a +jh, j =0,..,N and h= % js the constant step size. In this

study, we review several contributions from the literature, W|th particular emphasis on numerical
methods developed for solving equation (1), focusing particularly on the special class of single-step
block methods.
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2. Methodology

In this section, we construct an implicit six-point hybrid block method for the numerical
solution of Equation (1). The derivation is carried out under the assumption that the differential
equation is expressed in the standard form given in Equation (1).

2.1. Specification of the method

The method proposed in this study is a single-step block scheme incorporating four intra-step
points, as illustrated in Figure 1.

1 Block
¢ —o o ¢ —o o ¢ o o L
ty t, L t3 t, t5 fg t; 1Ig 1o
1. 3 5 7
O —h=h —h =h 1R
8 8 8

Figure 1. Single-step method with four hybrid points.

2.2. Derivation of the block method

In this section, we present the development of an implicit hybrid block method designed to
obtain numerical solutions for Equation (1). To construct the proposed block formulation, we begin by
considering the general first-order ordinary differential equation. The hybrid block formulation
combines both interpolation and collocation strategies, which help achieve higher accuracy while
maintaining numerical stability. By evaluating the function and its derivatives at selected hybrid points
within the subinterval, we obtain a system of simultaneous equations representing the implicit block
structure. This formulation ultimately leads to a computationally efficient scheme capable of providing

accurate and stable solutions for both stiff and non-stiff differential equations, assuming that the exact
solution p(t] is;

p(t) = Z?:uaiti : )
where ;€ R denote real-valued unknown coefficients, and
p'(t)=Xb, ia tL (3)
To determine the coefficients «;, the following conditions are imposed:
P(t:'!) = f;! : (4)

P (tuse) = fasor 0= Ormy,mm, L. (®)

where 0<r <mn, <my; <1 <1 and tpar = tn T rh i=1,2,..4
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To establish the hybrid collocation points, a set of arbitrary collocation parameters is introduced to
define the specific locations within each subinterval where the differential equation is enforced. These
parameters provide flexibility in determining the optimal distribution of points that enhance the
accuracy and stability of the resulting block method. To construct the hybrid collocation points, we
introduce arbitrary collocation parameters. Evaluating Equation (2) at t,,and Equation (2) at points,
[tn+r =tn+1h] i =1,2,...4 we obtain the following system:

(1 t, t: t2 th tn tE e [ YT

0 1 2t 3t2 4¢3 5td 6ty ||, J

0 1 2ty at§+a-', ‘Hgﬂ', 5t:+i"| IE‘tafs!'w', n': fa+r,

0 1 zti'!+r: 3t§+r’: 4tg+r’: 5r:+r: ﬁ‘trs!‘+r: ty | = -ﬁ’!+?’: and

0 1 2ti’!+i"3 3t5+r'3 ‘H'gﬂ'g St:'l'i’g 6tr?+r3 fa ﬁ""'rﬁ

0 1 zti'!+ri at§+r'i 4tg+r’,-. St:+ri ﬁtf;_‘_n _25_ ‘ﬁ’!"'r*

0 1 26, 33, 4l Sti. eel,l T R

e Ry M Va7 Ry M Va7 ity
a | |R || P R, fa R,
s R: .fi"!+r| R: .fi"!+r| R:
@y |=|Ry || fosr2| = |R2|B = a; = Ri(t,. 1)B, B =|fo+r2| and [R;(t,. 1)1y s =|R2 (6)
g R, .fi"!+r3 R, .fi"!+r3 Ry
G Re .fi"!+r; Re .fi"!+r; R
S VAN £y R

This resulting system of equations must be solved to determine the unknown coefficients «;, j =0, 1,
..., 4, which define the structure of the hybrid block method. Once these coefficients are obtained,
they are substituted back into Equation (2) to construct the complete numerical formulation of the
method. By introducing an appropriate change of variable, t =t, +ah this simplifies the
representation of the local solution within the subinterval, the approximate solution p(t,, + ah) can be
expressed in a compact analytical form as;

p(tn + ‘;L'IL) = Cl}}r:lz + .IL[C” (t:]f::z + C:l'._[:tjf::zﬂ'._ + C:l'z(tjf::zﬂ': + C:l'a[:tjf::zﬂ'a +
C:l‘,. [:t)f::H:'u + +C1(tj1ﬁz+l) (?j

-
fr

B ﬁ1+r,

B B
plt) = ) at' = Z Ri(t,. h)Bt = Z tR; (g, 1) | faer
=0 i=0 i=0 ﬁq+r3

fr1+r;
L e

Finally, the resulting form of Equation (3) is obtained as follows:
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-y, -
f
& .ﬁ’!+r'|

plt, + xh) :Z a; (t, + xh) = ZR,- (t, h)B(t, + xh)' = Z(tﬂxh]fﬂf{tﬂ. h) | fasrs
=0 =0 =0 ﬁ!+r3

..ﬁ’!+i";
'fr! +1- and

] &

plty +xh) = Cyyp + h(Cofy + Cofusr, + Cafasr, + Cafuur, + Csfasr, + Cafass) Where

Cp=X8_,(t, + xh)' R o (t,.h), hC, = X8 (¢, + xh) R, (£, h), k=12 .4

With
=1
o= _ 1 h (20480 h® — 73728h* + 102720 h* — 69120 h° +)
" 3150 22695h — 3150
2 ,
Crl=ﬁh-(2560h4 — 8832h* + 11460h* — 6730h + 1575)
z -
) A =—Eh-{2550 h* — 8064h* + 9060h% — 4110k + 523)

2, ;
Cry =5 W (2560h* — 7206h° + 7140h° — 2690k + 315)

2 .
Cry=— 375 h°(2560h* — 65281° + 5700h° — 1990k + 225)
32

(Cr, = 375 H(20480R* — 49152h° + 41280h° — 14080h + 1575)

To derive the main form of the hybrid block method, the polynomial approximation p(t, + xh)
is evaluated at selected hybrid points corresponding to x = 7, 15,3, 73, 1. These evaluation points are
carefully chosen within the normalized interval [0, 1] to balance accuracy, stability, and computational
efficiency. Substituting these values into the polynomial expression produces a system of
simultaneous equations that collectively defines the required block structure of the method as follows;
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( w79 14339 . 2208 o o, 409 ¢
— y 4 p| 2ote00’™ " ae1280°nFT 115200 MFTE  3sec0 (T
Ynsr, = Vn 1 a5 a1
16123Dﬁ!+"4 ::4uuﬁ‘+1

12800 12800
213 87
17920 f”‘”h " 22400 fa+a

&63 3963 1869 381
(224I}D f::: + 17920 Jf::z+:l'._ + Jf::z+:l'= J]F::z+:l'a +

(8)

125

295 2125 1325 515
f::z + - f::z+:". + f::z+:".. + f::z+:'* -
— + h 3064 10752 1 4608 ] 4608 -]
;l'r:lz+:"a Vi 25
10752 f”‘”h + B064 fasa

a89 4949 28469 10633
- f::z + - f::z+:"- + 119 f::z+:ﬂ- + f::z+:'13 +
— + h 28800 23040 L 115200 z 38400
}F;.;+;.-4 ¥u 2779 49
23030 Intr, " 3200 Int1
103 22 =424 =423 22
F?!"‘l - }:ri'! + II.(EJ.E'} f;! + 105 f;!"‘?'-_ + 795 f;!"‘?': + 275 f;!'l'?'a_ + 105 f;!"‘?"
103

The implicit Equation (8) can be solved using two approaches. The first approach applies fixed-
point iteration, provided the convergence condition is satisfied.

Vnar Mnar ¥n c1fn gu(¥y)
Mntr Yt Mn e f g=(¥y)
Let ¥V, = | ¥nsr, [We et ¥y =|Vnsr, | =GV} =|¥n| +|cafn| +|52(Fn)
4w Fntrg ¥n el 4(¥y,)
Mt Vst ¥n esfi gV,

The second approach employs Jacobi iteration, which proceeds as follows: starting with the
initial guess ¥.?, we obtain:

mn
vEH = G(vE

The final solution is obtained as ¥, subject to the stopping criterion |¥;* — ¥*~1| < €. By
applying the step-size transformation t, ., =t, +rh i =1,2,..4 and setting nK =R;, we
obtain the following transformation with K = 5:

1 3 3 7
J’]_ =§.j J": =§. r! =E.r_‘t =§:| —*K[J’]_.J":.J"!.J’_'t] =5[J’]_.J":.J"g.:"'4] = [RL.R:.RE.RJ_] = [1.2.3.‘1']

Leth=KHy =<y =f(t.y), 5, = y(t,).

ylt, +rh) = vt + vKH) = v orn = Vnon rK =R ez

Fori;r = f(t v}, we get
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BSL

. — v 4 ( 96 79 14329 2703 40
Yn+my = n 161280

3
zoreo0 17 T larzeo IR T Frery T ggpgg frems —

+

115200 T84/ fasr,
aL

aan o)

Or
ag, Yosr, + GV = KH(Bofy + B fara, + Ba. fara, + Ba, fasa, + Br, fasa, + Bufy o).

And we get
Og, Ynir, T 8p¥n = HH{ﬂnfn + .Er.ﬁwﬂ. +.£R:.ﬁ’!+ﬂ: +.333ﬁ!+33 +.Eﬂ;ﬁ'!+f-l; + B fy +;-:}I .
The truncation error is:

CD=nD+nL+---+nJ.-,

Cy=ay +2a + -+ kaj — (8o + By + + ;).

(B 42978, + =+ KkT'8,), q=2

' 1 ; : 1
qua{n‘]_-l-E . + -+ k n‘_i-}—m

Hence, the truncation error is expressed as CqH‘T}r':‘T:'[t,!].
]- Lagl C Llal
H=rh— CHY () =K—:.f:""y ¢ (tn]'

Obviously, we find that v, . g = ¥4 1 = 1,74

Thus
Voss =Vn T HEH[Cq i+ Cazfnsr + Canfose + Caafasa + Cashueal -

whereay = —l,a; = 1,5, = Cp 141 -

The linear multistep method is obtained in the form:

k

Z Ei¥n+j = KHZ 'rj‘_..ﬁ" +j
- = .

j=v

By using fi* = KF = 58 we get:

Z BiVnsj = KHZ 'rj|_|.fi"‘ +j = HZ .'r-?_i'-.fi"! +J
o j=0 =0 .

_i:

ftg, ¥nem, T Bo¥n
= H(B3fy + B fasr, +Bafosn, + B farn, + B2 fasa,
+ Bafosn. + Bafara, + Bifasx)
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2.3. Order and error constant of the method

In this section, we investigate the fundamental properties of Equation (8) to establish the
theoretical foundation of the proposed numerical method. The analysis focuses primarily on
determining the order of accuracy, which reflects how closely the numerical approximation matches
the exact analytical solution. To achieve this, we introduce the concept of the local truncation error,
which quantifies the error committed in a single computational step of the method. Furthermore, we
make use of linear difference operators to express the relationship between successive numerical
approximations in a compact and systematic form. By applying these operators, the algebraic structure
of the method becomes clearer, allowing for a more rigorous analysis of consistency and convergence.
To evaluate the local truncation error explicitly, we expand the exact solution y(t) about the point ¢,
using Taylor’s series, retaining terms up to the desired order. This expansion provides the basis for
comparing the analytical and numerical representations, thereby enabling the determination of the
method’s order and overall accuracy. By the linear difference operator, we obtain:

L [y(t,),h] = v(t, +oh) — -ILEJ- ,{?J-JE}F’ (t,+jh), o=r.,n,n, K.

where [8;  are the corresponding coefficients. We expand:
y(t, + oh) and v'(t, + jh), j = R,,R, Ry R,k about t, using Taylor’s series as;
Hyl(e):h] = Cpyl(t) + Cohy™ Y (8} + CR2 2 () + - + Cplzpj"p'{t] + e
Where C;,j = 0,1, ... are vectors. Hence €y =C) =--=C,=0, ;5 =C;#0 ,50 C;

is the error constant of the method. After collecting the coefficients of h, the expressions for the local
truncation error corresponding to each formula are derived as follows:

. 1217 . .
L, D) M = = f5grg08ea00 "' E) + O(RT)
L Iyt ) ] = = ho & (2.) 4007
# Y0 = Saoaz0 T Y ) TOW
25 )
Ly, Ly(t,) h] = —mhr’j"r"{tﬂ] + 0(R7),
343
. —_—— B, B T
La,[y(tn). bl = Someeo e iy () + 0(R7),
LIy(e) h] = —— 17y () +0()
(AL = e es1s200 0 ¥ () O

Consequently, from the above results, the order of the newly developed method is six, and the
corresponding vector of error constants is given by:

.= (_ 1217 BT _ 25 343 ar ‘]T

= 19BIE0BEADD ' 73400I2Z00" 792723456 2BILISSTO0’ 619315200S
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2.4. Consistency

Definition 2.1: According to [20], a linear multistep method (LMM) is consistent if its order
satisfies p = 1. Meaning p = 1, this ensures that the local truncation error tends to zero as the step
h — 0. Since the proposed hybrid block method possesses an order of p =6 = 1, it satisfies this
fundamental criterion of consistency. Therefore, it can be concluded that the newly developed method
is indeed consistent. This property confirms that the method provides an accurate approximation of the
exact solution, forming a key requirement for overall convergence.

2.5 Zero stability

Definition 2.2. A linear multistep method is said to be zero-stable if no root of the first
characteristic polynomial p(z) has modulus greater than one. Moreover, it is simple if all roots lie on
the unit circle. For convergence, a linear multistep method must be both zero-stable and consistent
[20]. Since the proposed block method satisfies |Z;'F5 1, it is therefore zero-stable.

According to Definition 2.2, a linear multistep method is considered zero-stable if none of the
roots of its first characteristic polynomial have a modulus greater than one. This condition ensures that
errors introduced at one step of the computation do not grow uncontrollably as the numerical process
proceeds. Moreover, the method is said to be simple if all roots of the characteristic polynomial lie
exactly on the unit circle, indicating that the numerical solution remains bounded over successive
iterations. Zero-stability is a crucial requirement for ensuring the reliability of any linear multistep
method, as instability can lead to divergence even when the method is otherwise accurate. In this
study, the proposed block method has been verified to satisfy the necessary root condition of the
characteristic polynomial as given below.

For the stability analysis, the hybrid block method in equation (7) is reformulated into the
following matrix form:

1 —_ ] o 1
AY,., =AY, + h(B°F, —B'F,4,), 9)
Note that
¥oe = [.‘J'r!+R|'.1J'r!+R:'J'r! +Rz' Vn+mg .1J1r!+1.]-1
¥o= [.‘J'r! +R -1 Yn+Ra-1 Y +R;-1 +R;—L'J1i’!]- )
Foor = sy fovay Fasny Fasag ool
F= [fr- +R|—L'.fr!+R:—L'.fr!+23—L'fr!+ﬂ;—1.'.ﬁ'!]-'
where
14339 2203 409 @51 _ 41 7
161280 115200 38400 161280 22400
10000 o000l 1963 leey 3@l 213 &7
01000 ooooil 17920 17800 17800 17920 22400
At=loo100| A°=lo0001 | Bl=| == = = _ = =
10752 4DE  460E 10752 BO64
ooo1a0 oooo01 4545 28465 10633 2779 49
gooooil gooooil 73040 115200 IB400 23040 3200
= s s 2= e
" 105 225 225 105 3150 -

e-ISSN: 2289-7771 JA@PE

169



Journal of Applied Science & Process Engineering
Vol. 12, No. 2, 2025

B'=loono0o0D

ﬁ!+ﬂ| =f{tr! +z‘jt'.'-"{tr! -I—z;jt]} = f{ti’!+ﬂ|'.1-|1i’! +R|}'J'r =f{t':|':|,
4Y,,, = A, + h(B°E, + B'F,.,)

Let 'F;z = F:+1 = ﬂ’

¥

A'Yn,, = A°Y, + h(B°F, + B'F,,,) —» A'¥,,, — A%, = 0,

Lety, = z', we get;

— 1 . . . . n+A n+f;z
Fi’!+]._[Ji’!+ﬂ|'Ji’!+R:'Ji’!+Rg'Ji’!+R;'Ji’!+L] =z bz K

M+Ry pM+Rg on+L]T

Z
A'z¥, — A%, =0 = (A'z —A°W, =0

", itis required that (A*z — A%) be non-singular. Hence, we
impose det(A'z — A%) = 0. We then obtain:

To obtain a nontrivial solution for ¥,

10000700001
oi1o000| (00001
det(A'z—A")=z|oo100 |-|l00O0OD1
ooo1o0||oo001
onooo1dlopooo1

=z*(z—1)=0-z = (0,0,0,0,1).
To analyse linear stability, we apply the method to the standard test problem:

v =f(ty)=1ty, Re(r)<0 . (10)
Let

—

Four = [ﬁ!+ﬂ|'ﬁ’!+ﬂ:'fﬂ+ﬂg'fﬂ+ﬂ;'ﬁ’! +J.]- = [T.Tr! +R TV 48,0 TV +Rg'TJ'ﬂ+R;'T_'J'ﬂ+L]

= T[.Ti’!+R| Vn+Ra Mn+Ra Yn+Ra ¥ +J.]- =T+t

Substituting
y' =ty in A'v,,, = A", + h(B"E, + B'E,.,,).

we obtain
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e-ISSN: 2289-7771 JA@FE

170



Journal of Applied Science & Process Engineering
Vol. 12, No. 2, 2025

A'Y,,, = A%, + h(B°F, + B'F,,,) — A'Y,,, = A°Y, + h(B®¥, + B 4V, ,)

AV, — hBrtY, , = A", + hB'Y, = (A' —hBLYoY,,, = (4" + .’zBDr]lr’i.,_,
- Y ., =(A'"—hB'1) (4" + hB D)Y,
Buth = th

= V,.,= (40— BY) 7 (4° + RBO),

And Y;;+1 = M(E)Y;z’

= M(R)y, = (At —7BY) (40 + RBY)Y,

~ M(R) = (A4t — 7BY) (40 £ 7BY)

The behavior_of the numerical solution ¥, ., is governed by the eigenvalues of. M (k). The
stability matrix M (i )admits eigenvalues {0, 0, 0,” 0, ¥ (k)] where the dominant eigenvalue y (k)
is given in the following rational form:

£l°

ﬁ} _ RIE)

=]

R(R) = —105h° — 3026h* — 41472h% — 328704h% — 1474560h — 2049120,
Q(R) =105h° — 3026R* + 41472h% — 328704h% + 1474560k — 2040120.
Let v,,, = M(i)¥, = MY, then we obtain

¥, = MY,

¥, = MY, = M(MY,) = MY,

Finally, we get;

¥; = MiY,
Therefore, the numerical solution is stable provided that

lim¥; =0 limM/ =0
J—rm= J—=e= y

Alternatively, it can be expressed in norm form as follows:

M| = 1

i ) ) Jaurnal of Applied Science
e-ISSN: 2289-7771 JA@FE

171



Journal of Applied Science & Process Engineering
Vol. 12, No. 2, 2025

2.6. Convergence of the method

Theorem 1: [8] Consistency and zero stability are sufficient conditions for a linear multi-step
method to be convergent. Since consistency and zero-stability of the proposed method have been
established, the newly developed method (8) is convergent.

Consistency and zero-stability are the two fundamental requirements for ensuring that a linear
multistep method converges to the true solution of an ordinary differential equation. Consistency
means that the local truncation error of the method tends to zero as the step size decreases, ensuring
the numerical formula accurately represents the original differential equation. Zero-stability ensures
that errors introduced at any step do not grow uncontrollably as computations proceed, maintaining the
stability of the numerical solution. When both conditions are satisfied, the method is convergent,
meaning the numerical solution approaches the exact analytical solution as the step size tends to zero.

2.7 Stability region

Definition 2.3: Following [21], a block hybrid method is said to be A-stable if the entire left-half
of the complex plane lies within its region of absolute stability. Based on this definition, the proposed
block method is A-stable, as illustrated in Figure 2.

The concept of A-stability is crucial in the analysis of numerical methods for solving stiff
ordinary differential equations (ODESs). According to Definition 2.3, a block hybrid method is said to
be A-stable if its region of absolute stability completely contains the left-half of the complex plane,
meaning that for any test equation of the form:

v'=f(ty) =1y, Re(r) <0

The numerical solution remains stable regardless of the step size h. In other words, the method
does not produce growing numerical oscillations or instabilities when applied to problems where the
exact solution decays over time.

In the context of the proposed block hybrid method, the A-stability property ensures that the
method can handle stiff equations effectively, allowing for larger step sizes without sacrificing
numerical stability. This is particularly important for systems where rapid decay or oscillatory
behavior occurs, as explicit methods typically fail or require excessively small steps in such cases. The
stability region, often depicted in the complex plane, shows where the magnitude of the amplification
factor |R(z)| < 1with z = hi.

As illustrated in Figure 2, the stability region of the proposed method encompasses the entire
left-half of the complex plane, confirming that it satisfies the A-stability condition. This means that for
all z with negative real parts, the numerical solution remains bounded and converges to the true
solution. Consequently, the proposed block method is highly reliable for stiff initial value problems,
providing both stability and accuracy over a wide range of step sizes.
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I d Fad

Figure 2. Region of absolute stability

3. Numerical results

In this section, the performance of the proposed method is thoroughly evaluated by applying it
to a set of first-order ordinary differential equations comprising both stiff and non-stiff problems.
These examples are carefully selected to test the method’s reliability, stability, and adaptability across
a wide range of problem characteristics. The numerical experiments are implemented using MATLAB
to ensure precision and reproducibility of results. For comparison purposes, the well-established
MATLAB solver ode45 is employed as a benchmark, allowing for an objective assessment of the
proposed method’s performance. The accuracy of the computed solutions is examined through
absolute error measurements, while computational efficiency is evaluated in terms of execution time.
The results obtained are organized and presented in a series of tables for clarity and ease of
interpretation.

Table 1: The list of test problems along with their initial condition, integration interval, and exact
solution, respectively

S/ Problem Initial Interval Exact solution Sourc
N condition e
1 | Linear stiff equation w(0)=1l0=t<10| y,(t) =e Fcos (10t) | [23]
yi=-—» + 10y,
y =10y~ y2(0)=0 ¥, (t) = e"sin (10¢)
2 | Nonlinear differential equation | y(0)=2 |0<t=<1 e’ —1 [24]
yrzl_},: y(t]=32E+1
3 | Nonlinear stiff equation wo=1 |0o=gt=<1 v (t) =e™* [25]
yi = —12y, + 10yF y:(0)=1
A TRl Ll U vo(t) =e"
4 | Stiff differential equation y(0)=1l|0=t=<1 v, (t) =ef [26]
¥, = ¥g — cost
Yo =yz— e y,(0) =0 v, (t) = sint
Y =¥+
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yy(0)=2 v3(t) = e® + cost
5 | Stiff differential equation w=2 |0=st=<1| w(t)=2e"" +sint | [26]
Y =2ty y2(0) =3
ya = —3y, + 2y, — cost + sint v, (t) = 2e7F + cost
6 | Nonlinear stiff chemical y1(0) =1 | 0=t =40 | y/(t) =07158270687194135| [27]
reaction problem of Robertson:
yi = —0.04y; +10%,ys,
. }’:{:ﬂ} =10
Vi =004y, ~ 104 3 X 107y, y,(£) = 9.185534764558135 x 1078
Yz =3 107ys ya(0) =0

y5(£) = 0.28416374574582

7 | The SIR model is an [7]
epidemiological model that
computes  the  theoretical
number of people infected with
a contagious illness in a closed
population over time. The name
of this class of models derives
from the fact that they involve
coupled equations relating the
number of susceptible people
S(t), number of people infected
I(t) and the number of people
who have recovered R(t).
Defined as: Y =S + | + R, the

evolution equation is

y(®)=p(1-y)=0

P: :E’ _U(ﬂ] = 3 0 £ ¢ ::_: 1 V(tj — l_D-EE—I}.Ef
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Table 2: Comparison between the absolute error and CPU time for problem 1 at various values of h

h Method Absolute Error CPU time
Proposed method 6.5023e "% 0.1053
[5] 1.5406e 7% 0.1241
1072 [6] 5.1953¢70¢ 0.1023
[7] 2.6613e7% 0.1044
Proposed method 6.5096e 10 0.0944
[5] 1.5430e7% 0.0970
107%  [6] 5.2070e™%° 0.0849
[7] 2.6661e™ % 0.0960
Proposed method 6.5103e 13 0.0863
[5] 1.5432e12 0.0904
107%  [6] 5.2082e712 0.0908
[7] 2.6666e 1 0.0893

Table 3: Comparison between the absolute error and CPU time for problem 2 at various values of k

h Method Absolute Error CPU time
Proposed method 5.2042¢718 0.073253

[5] 3.4044e~ Y 0.088921

1072 [6] 5.2009 ™17 0.081897
[71 4569917 0.087229
Proposed method 9.7578e1? 0.072765

[5] 5.7463e 18 0.087937

107%*  [6] 6.5052¢e 18 0.080570
7 7.4810e 18 0.081080
Proposed method 5.7598e1° 0.069652

[5] 8.0618e 18 0.085403

1075 [6] 6.4781e718 0.083292
7 9.6697e 18 0.080763
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Table 4: Comparison between the absolute error and CPU time for problem 3 at various values of h

h Method Absolute Error CPU time
Proposed method 6.4658e " 0.1371
[5] 1.5291e7 % 0.2311
1072 [6] 5.1373¢°% 0.1577
[7] 2.6375e %8 0.1630
Proposed method 6.5060e 12 0.1008
[5] 1.5418e 11 0.1725
1073 [6] 5.2012e~ 1 0.1247
[7] 2.6637e" 1 0.1288
Proposed method 6.6613e1° 0.0765
[5] 1.5321e™ 1 0.0875
107* [6] 5.2180e~1* 0.0934
[71 2.6645e 1% 0.0909

Table 5: Comparison between the absolute error and CPU time for problem 4 at various values of h

h Method Absolute Error CPU time
Proposed method 6.5104e~10 0.0856
[5] 1.5432e7% 0.1140
1072 [6] 52083 0.0862
[7] 2.6667e%° 0.0965
Proposed method 6.5103¢713 0.0918
[5] 1.5437e7 12 0.0944
1073 [6] 5.2081e~ 12 0.0939
7 2.6665¢ 12 0.0949
Proposed method 6.6613e71° 0.0906
[5] 1.3323¢715 0.0921
107* [6] 5.1070e715 0.0916
[7] 2.8866e 1% 0.0940
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Table 6: Comparison between the absolute error and CPU time for problem 5 at various values of k

h Method Absolute Error CPU time
Proposed method 7.8027e”Y 0.090094
[5] 1.3866e % 0.093049
1072 [6] 3.1172¢7% 0.095068
7 1.9960e7% 0.092819
Proposed method 7.8115e~% 0.081289
[5] 1.38872 7% 0.093814
1073 [6] 3.1242¢7%8 0.086677
[7] 1.9996¢ %8 0.088596
Proposed method 7.8124e~ 1 0.076882
[5] 1.3889¢ 10 0.093780
107%  [6] 3.1249¢710 0.085224
7 2.0000e710 0.091410

Table 7: Comparison between the absolute error and CPU time for problem 6 at various values of h

h Method Absolute Error CPU time
Proposed method 3.2474e"12 0.0874
[5] 1.0207e™1 0.1559
1072 [6] 2847771 0.0946
[7] 1.7861e™ % 0.1500
Proposed method 9.3547 13 0.0873
[5] 2.0065e 12 0.1269
2.0 X 107* g1 2.0553¢~12 0.1085
[7] 2102412 0.1100

Table 8: Comparison between our method and other established methods for problem 7.

h Method Absolute Error CPU time
NANNM [28] 7.379¢ 708 0.1466
10~ OHBMB5A [29] 7.071068e 02 0.1423
Proposed HBM 4521913 0.0843
NANNM [28] 7.757e 708 0.0464
1072 OHBMS5A [29] 2.3895¢ 703 0.0585
Proposed HBM 3.3307e7 15 0.0284
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Abbreviations

h Step Size,

CPU Central Processing Unit,

HBM Proposed Hybrid Block Method,

NANNM New Adaptive Nonlinear Numerical Method,

OHBM5A Optimized Hybrid Block Method with fifth-order, Adaptive and

fixed step-size.

The figures presented below provide a graphical illustration of the maximum absolute errors
obtained for Test Problems 1-7 using the proposed hybrid block method. These visualizations serve to
demonstrate the accuracy and reliability of the developed numerical scheme when applied to different
types of ordinary differential equations. Figures 3-7 display the maximum absolute error distribution
for Problems 1-5 at a step size of h = 0.01, revealing that the error remains minimal and uniformly
distributed across the integration intervals. Figure 8 presents the corresponding results for Problem 6
at a step size of h = 0.001, where the method maintains excellent numerical stability with only slight
variations in error magnitude. Similarly, Figures 9-10 illustrate the maximum absolute error for
Problem 7, computed at k = 0.1, showing a consistent pattern of accuracy throughout the solution
domain. Collectively, these figures confirm that the proposed method delivers high precision across all
test cases. The close agreement between the numerical results and exact solutions provides the
robustness and efficiency of the developed hybrid block scheme.

max absolute error vs time
T T T T T

Numerical result
0.9 - Exact solution

max absolute error

(o] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 3. Efficiency curve for problem 1 at h = 0.01.
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Figure 4. Efficiency curve for problem 2 at h = 0.01.
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Figure 5. Efficiency curve for problem 3at h = 0.01.
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Figure 6. Efficiency curve for problem 4 at h = 0.01.
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max absolute error vs time

0.08 |-
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0.02 -

Numerical result
Exact solution

— ]

<104

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 O.1
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Figure 7. Efficiency curve for problem5at h = 0.01.
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max absolute error
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Numerical result
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Figure 8. Efficiency curve for problem 6 at h = 0.001.
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Figure 9. NANNM curve for problem 7 at h = 0.1.
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Error norm vs time
T T T

- —©— Numerical result
L - .
0.9 - — — — Exact solution

Error norm
o
[4)}
N
|

1 2 3 4 5 6 7 8 9 10
time

Figure 10. OHBM5A curve for problem 7 at h = 0.1.

3.1. Discussion of results

The use of an implicit solver in the proposed single-step hybrid block method significantly
influences both accuracy and computational efficiency. Implicit solvers are generally more stable and
permit larger step sizes without compromising accuracy. This enhanced accuracy results from the
implicit formulation’s ability to effectively manage stiffness and suppress numerical instabilities
commonly encountered in explicit schemes. However, this comes with a trade-off: implicit methods
typically require solving nonlinear or linear systems at each step, leading to increased CPU time due to
the additional computational overhead. Despite this, MATLAB implementation results demonstrate
that the gain in accuracy often outweighs the modest increase in computational time, as evidenced by
the error versus CPU time plots shown in Figures 3-10. The proposed method was compared with
those in [5], [6] and [7], considering both absolute error and CPU time for various step sizes h. In
addition, comparisons were made with two established methods: the New Adaptive Nonlinear
Numerical Method (NANNM) [28] and the Optimized Hybrid Block Method with fifth-order,
adaptive and fixed step-size (OHBM5A) [29]. The plots of time versus maximum absolute error for
the proposed method across Problems 1-6 are shown in Figures 3-8, while corresponding results for
the established methods for Problem 7 are presented in Figures 9-10. Overall, the proposed hybrid
block method produced the smallest absolute errors compared to other methods, indicating that it
competes favourably with existing approaches.

4. Conclusion

This paper introduces a computational hybrid block method with four intra-step points for
solving first-order stiff and non-stiff differential equations. The method extends existing block hybrid
schemes originally designed for delay ordinary differential equations and adapts them to stiff problems
through interpolation techniques for terms not defined at grid points.

Analytical properties such as zero-stability, consistency, convergence, and A-stability are
rigorously established, confirming the method’s theoretical soundness. Numerical experiments on
several benchmark problems validate the approach, showing that it achieves high accuracy (sixth-
order convergence) and competitive computational efficiency, outperforming existing methods in
terms of absolute error and CPU time.

Practically, the proposed method is significant for engineering, biological, and physical models
where system dynamics depend on past states with processes that evolve at vastly different rates (some
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components change very rapidly while others vary slowly). Its simplicity of implementation and
robust stability characteristics make it well-suited for such applications.

However, potential limitations include the implicit nature of the scheme, which may increase
computational cost due to the need for solving algebraic systems at each step, and dependence on
accurate interpolation for stiff terms, which can introduce minor errors if not handled carefully.
Additionally, CPU times were not comprehensively or consistently reported, limiting full quantitative
comparison of efficiency across all test cases.

Overall, the paper makes a clear methodological contribution by extending hybrid block
methods to a class of stiff and non-stiff differential equations, demonstrating strong performance and
reliability for solving such problems.
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