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Abstract 
 

This research introduces a novel single-step hybrid block method with four intra-step points that 

attains six-order accuracy, ensures A-stability, consistency, and convergence, and provides an 

efficient, accurate, and computationally economical tool for solving first-order ordinary differential 

equations. The formulation incorporates interpolation techniques to approximate function values at 

points where terms are not explicitly defined on the computational grid. In addition to the construction 

of the scheme, the paper rigorously investigates its theoretical properties. The results obtained show 

that the method not only achieves high accuracy but also performs competitively when compared with 

other established numerical techniques reported in the literature. 
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1. Introduction 

 

Block hybrid methods are numerical schemes that integrate linear multistep techniques with 

power series representations through interpolation, and were initially introduced by [1]. These 

methods introduce an extra interpolation point at each step of the formula, thereby increasing the 

accuracy of differential equation solutions and contributing to improved convergence rates. Since the 

pioneering work by [2], block methods have attracted significant interest in the literature because of 

their proven effectiveness in solving both initial value problems (IVPs) and boundary value problems 

(BVPs), attributed to their flexibility, high accuracy, and computational efficiency in handling 

complex systems. [3] introduced a hybrid overlapping grid block method that combines equally spaced 

and optimally chosen grid points for the efficient solution of both linear and nonlinear first-order 

initial value problems (IVPs). Similarly, [4] applied a block hybrid method with equally spaced grid 

points to address both linear and nonlinear first-order IVPs, demonstrating convergence rates that 

surpassed those of the classical fourth-order Runge–Kutta method. [5] developed an efficient five-

point hybrid block method, adapted from ODE solvers and enhanced through interpolation to manage 

piecewise constant delays in first-order differential equations. The method was formulated as a single-
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step implicit block scheme with three intra-step grid points, optimized to minimize local truncation 

error while maintaining low computational cost, as well as ensuring consistency, stability, and 

convergence. [6].  [7] proposed a hybrid block method in variable step-size mode for the solution of 

first-order initial value problems of ODEs. These hybrid methods provide notable advantages, such as 

adaptive step-size control, the use of information from off-step points, and, most importantly, the 

ability to surpass the Dahlquist barrier of zero stability [8]. Recently, however, a number of 

researchers, including [9], [10], [11], [12], and [13] have been emphasizing the development of single-

step hybrid block methods. Single-step and multi-step numerical methods for solving ordinary 

differential equations in water tank drainage systems have been compared in terms of accuracy, 

stability, computational efficiency, and optimal step size [14]. A simple approach for constructing a 

general class of A-stable explicit second-order one-step methods for stiff problems, inspired by 

Mickens’ nonstandard finite difference methodology, was presented [15]. A fourth-order accurate and 

efficient predictor–corrector method for solving initial value problems of ordinary differential 

equations was introduced, developed through integral transformation and numerical quadrature 

techniques [16]. A predictor-corrector scheme based on a semi-open and closed-Cotes quadrature 

process for solving initial value problems of ordinary differential equations was also proposed [17]. A 

third-order, three-stage Trigonometrically-Fitted Improved Runge-Kutta (TFIRK3(3)) method for 

solving oscillatory ordinary differential equations was developed [18]. Finally, an examination of the 

Runge-Kutta and Multistep methods for solving initial-value problems highlighted their strengths and 

limitations, and recommended the development of hybrid methods that combine the properties of both 

classes [19]. In his work, [20] presented a comprehensive treatment of computational methods in 

ODEs, emphasizing the practical aspects of stability, convergence, and error control in linear multistep 

and one-step schemes. [21] focused specifically on a special stability problem for linear multistep 

methods.                  
The adoption of single-step hybrid block methods has gained significant attention in numerical 

analysis due to their balance between simplicity, stability, and computational efficiency. These 

methods are particularly attractive because they require less derivation effort and produce algorithms 

that are straightforward to implement on digital computers, thereby minimizing sources of numerical 

error. Moreover, their strong stability properties resulting from fixed-step discretization allow for the 

use of smaller step sizes without considerable error amplification from perturbations, making them 

reliable for solving a wide range of ordinary differential equations (ODEs) [22]. In terms of 

computational complexity, single-step hybrid block methods generally demand fewer arithmetic 

operations per step compared to multi-step or predictor–corrector schemes, leading to faster execution 

times and lower memory usage. This efficiency is especially beneficial when solving large systems or 

stiff problems where stability and accuracy must be maintained over many iterations. Despite these 

advantages, ongoing research continues to propose improved block methods aimed at achieving 

higher-order accuracy and enhanced stability, further reducing computational errors relative to existing 

techniques. In this context, the present study applies a hybrid block method to the solution of first-

order ordinary differential equations of the form; 

  . x ∈ [a, b].                                                 (1) 

Note that  denotes a set of equally spaced points in the 

interval , where  is the constant step size. In this 

study, we review several contributions from the literature, with particular emphasis on numerical 

methods developed for solving equation (1), focusing particularly on the special class of single-step 

block methods. 
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2. Methodology 
 

In this section, we construct an implicit six-point hybrid block method for the numerical 

solution of Equation (1). The derivation is carried out under the assumption that the differential 

equation is expressed in the standard form given in Equation (1). 

 

2.1. Specification of the method 

 
The method proposed in this study is a single-step block scheme incorporating four intra-step 

points, as illustrated in Figure 1. 

 

 

 

Figure 1. Single-step method with four hybrid points.      

                                                                                

2.2. Derivation of the block method 

 

In this section, we present the development of an implicit hybrid block method designed to 

obtain numerical solutions for Equation (1). To construct the proposed block formulation, we begin by 

considering the general first-order ordinary differential equation. The hybrid block formulation 

combines both interpolation and collocation strategies, which help achieve higher accuracy while 

maintaining numerical stability. By evaluating the function and its derivatives at selected hybrid points 

within the subinterval, we obtain a system of simultaneous equations representing the implicit block 

structure. This formulation ultimately leads to a computationally efficient scheme capable of providing 

accurate and stable solutions for both stiff and non-stiff differential equations, assuming that the exact 

solution  is; 

                    .                                                                                                        (2) 

 

where  ∈ ℝ denote real-valued unknown coefficients, and 

 

                                                                                                                     (3) 

 

To determine the coefficients , the following conditions are imposed: 

               .                                                                                                                       (4) 

 

             .                                                                      (5)  
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0 
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To establish the hybrid collocation points, a set of arbitrary collocation parameters is introduced to 

define the specific locations within each subinterval where the differential equation is enforced. These 

parameters provide flexibility in determining the optimal distribution of points that enhance the 

accuracy and stability of the resulting block method. To construct the hybrid collocation points, we 

introduce arbitrary collocation parameters. Evaluating Equation (2) at and Equation (2) at points, 

 we obtain the following system: 

 

              and  

 

            ,  and          (6) 

 

 

This resulting system of equations must be solved to determine the unknown coefficients ,  j = 0, 1, 

…, 4, which define the structure of the hybrid block method. Once these coefficients are obtained, 

they are substituted back into Equation (2) to construct the complete numerical formulation of the 

method. By introducing an appropriate change of variable,  this simplifies the 

representation of the local solution within the subinterval, the approximate solution  can be 

expressed in a compact analytical form as; 

                   

 

            
 

Finally, the resulting form of Equation (3) is obtained as follows: 
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                and 

 

                 where 

 

                 . 

 

With 

                  . 

 
To derive the main form of the hybrid block method, the polynomial approximation    

is evaluated at selected hybrid points corresponding to . These evaluation points are 
carefully chosen within the normalized interval  to balance accuracy, stability, and computational 
efficiency. Substituting these values into the polynomial expression produces a system of 
simultaneous equations that collectively defines the required block structure of the method as follows; 
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                     (8)      

The implicit Equation (8) can be solved using two approaches. The first approach applies fixed-

point iteration, provided the convergence condition is satisfied. 

 

                     Let  we get    

 

The second approach employs Jacobi iteration, which proceeds as follows: starting with the 

initial guess , we obtain: 

 

                        . 

The final solution is obtained as  subject to the stopping criterion . By 

applying the step-size transformation , we 

obtain the following transformation with   

                          

 
 

Let . 

 

          
 

      For , we get 
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Or 

          . 

 

And we get 

          .   

 

The truncation error is: 

 

         , 

 

         , 

          

         . 

 

Hence, the truncation error is expressed as . 

         . 

 

Obviously, we find that  

Thus 

              . 

                                                                                                              

where . 

The linear multistep method is obtained in the form: 

 

            . 

 

By using we get: 

            . 
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2.3. Order and error constant of the method 

 
In this section, we investigate the fundamental properties of Equation (8) to establish the 

theoretical foundation of the proposed numerical method. The analysis focuses primarily on 
determining the order of accuracy, which reflects how closely the numerical approximation matches 
the exact analytical solution. To achieve this, we introduce the concept of the local truncation error, 
which quantifies the error committed in a single computational step of the method. Furthermore, we 
make use of linear difference operators to express the relationship between successive numerical 
approximations in a compact and systematic form. By applying these operators, the algebraic structure 
of the method becomes clearer, allowing for a more rigorous analysis of consistency and convergence. 
To evaluate the local truncation error explicitly, we expand the exact solution  about the point  
using Taylor’s series, retaining terms up to the desired order. This expansion provides the basis for 
comparing the analytical and numerical representations, thereby enabling the determination of the 
method’s order and overall accuracy. By the linear difference operator, we obtain: 
 

               . 

 

where    are the corresponding coefficients. We expand: 

                about  using Taylor’s series as;  

 

               
 

Where are vectors. Hence   , so  
is the error constant of the method. After collecting the coefficients of , the expressions for the local 
truncation error corresponding to each formula are derived as follows: 

 

             

              
 

              
 

              
 

               
 

Consequently, from the above results, the order of the newly developed method is six, and the 
corresponding vector of error constants is given by: 
 

                 . 
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2.4. Consistency 

 
Definition 2.1: According to [20], a linear multistep method (LMM) is consistent if its order 

satisfies  . Meaning , this ensures that the local truncation error tends to zero as the step 
. Since the proposed hybrid block method possesses an order of , it satisfies this 

fundamental criterion of consistency. Therefore, it can be concluded that the newly developed method 
is indeed consistent. This property confirms that the method provides an accurate approximation of the 
exact solution, forming a key requirement for overall convergence. 
 

2.5 Zero stability 

 
Definition 2.2. A linear multistep method is said to be zero-stable if no root of the first 

characteristic polynomial  has modulus greater than one. Moreover, it is simple if all roots lie on 
the unit circle. For convergence, a linear multistep method must be both zero-stable and consistent 
[20]. Since the proposed block method satisfies , it is therefore zero-stable.  

According to Definition 2.2, a linear multistep method is considered zero-stable if none of the 
roots of its first characteristic polynomial have a modulus greater than one. This condition ensures that 
errors introduced at one step of the computation do not grow uncontrollably as the numerical process 
proceeds. Moreover, the method is said to be simple if all roots of the characteristic polynomial lie 
exactly on the unit circle, indicating that the numerical solution remains bounded over successive 
iterations. Zero-stability is a crucial requirement for ensuring the reliability of any linear multistep 
method, as instability can lead to divergence even when the method is otherwise accurate. In this 
study, the proposed block method has been verified to satisfy the necessary root condition of the 
characteristic polynomial as given below. 

For the stability analysis, the hybrid block method in equation (7) is reformulated into the 
following matrix form: 

 

                                                                                            (9) 

Note that  

                  , 

 

                , 

 

                   , 

 

                . 

where 

                          B1=  
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                     , 

 

                   , 

 

                   Let  

                   , 

 

                  Let , we get; 

                  , 

 

                  , 

 

To obtain a nontrivial solution for , it is required that  be non-singular. Hence, we 

impose . We then obtain: 

                -  

                                          . 

 

To analyse linear stability, we apply the method to the standard test problem:    

                                                         

                  .                                                                            (10) 

Let  

      

 
Substituting 

              in    

 

we obtain 
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             , 

 

 

            , 

 

          , 

                But  

          , 

 

            And  , 

          , 

 

            , 

 
The behavior of the numerical solution  is governed by the eigenvalues of. . The 

stability matrix admits eigenvalues  where the dominant eigenvalue  
is given in the following rational form: 
 

               .  

 

               . 

 

               . 

 

               Let    then we obtain 

 

                , 

 

                , 

 

Finally, we get; 

                 , 

Therefore, the numerical solution is stable provided that 

 

                    , 

 

Alternatively, it can be expressed in norm form as follows: 

 

                    . 
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2.6. Convergence of the method 
 

Theorem 1: [8] Consistency and zero stability are sufficient conditions for a linear multi-step 
method to be convergent. Since consistency and zero-stability of the proposed method have been 
established, the newly developed method (8) is convergent. 

Consistency and zero-stability are the two fundamental requirements for ensuring that a linear 
multistep method converges to the true solution of an ordinary differential equation. Consistency 
means that the local truncation error of the method tends to zero as the step size decreases, ensuring 
the numerical formula accurately represents the original differential equation. Zero-stability ensures 
that errors introduced at any step do not grow uncontrollably as computations proceed, maintaining the 
stability of the numerical solution. When both conditions are satisfied, the method is convergent, 
meaning the numerical solution approaches the exact analytical solution as the step size tends to zero. 

 
2.7 Stability region 
 

Definition 2.3: Following [21], a block hybrid method is said to be A-stable if the entire left-half 
of the complex plane lies within its region of absolute stability. Based on this definition, the proposed 
block method is A-stable, as illustrated in Figure 2. 

The concept of A-stability is crucial in the analysis of numerical methods for solving stiff 
ordinary differential equations (ODEs). According to Definition 2.3, a block hybrid method is said to 
be A-stable if its region of absolute stability completely contains the left-half of the complex plane, 
meaning that for any test equation of the form: 

                   
 

The numerical solution remains stable regardless of the step size h. In other words, the method 
does not produce growing numerical oscillations or instabilities when applied to problems where the 
exact solution decays over time. 

In the context of the proposed block hybrid method, the A-stability property ensures that the 
method can handle stiff equations effectively, allowing for larger step sizes without sacrificing 
numerical stability. This is particularly important for systems where rapid decay or oscillatory 
behavior occurs, as explicit methods typically fail or require excessively small steps in such cases. The 
stability region, often depicted in the complex plane, shows where the magnitude of the amplification 
factor with . 

As illustrated in Figure 2, the stability region of the proposed method encompasses the entire 
left-half of the complex plane, confirming that it satisfies the A-stability condition. This means that for 
all z with negative real parts, the numerical solution remains bounded and converges to the true 
solution. Consequently, the proposed block method is highly reliable for stiff initial value problems, 
providing both stability and accuracy over a wide range of step sizes. 
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Figure 2.  Region of absolute stability 

 

3. Numerical results 

 
In this section, the performance of the proposed method is thoroughly evaluated by applying it 

to a set of first-order ordinary differential equations comprising both stiff and non-stiff problems. 
These examples are carefully selected to test the method’s reliability, stability, and adaptability across 
a wide range of problem characteristics. The numerical experiments are implemented using MATLAB 
to ensure precision and reproducibility of results. For comparison purposes, the well-established 
MATLAB solver ode45 is employed as a benchmark, allowing for an objective assessment of the 
proposed method’s performance. The accuracy of the computed solutions is examined through 
absolute error measurements, while computational efficiency is evaluated in terms of execution time. 
The results obtained are organized and presented in a series of tables for clarity and ease of 
interpretation. 
 

Table 1: The list of test problems along with their initial condition, integration interval, and exact 

solution, respectively 

 

S/

N 

Problem Initial 

condition 

Interval Exact solution Sourc

e 

1 Linear stiff equation 

 

 

 

 

  

 

[23] 

2 Nonlinear differential equation 

 
  

 

[24] 

3 Nonlinear stiff equation 

 

 

 
                                                                                        

  

 

[25] 

4 Stiff differential equation 

 

 

 

1 

0 

  

 

[26] 
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5 Stiff differential equation 

 

 

 
                                                                                       

  

 

[26] 

6 Nonlinear stiff chemical 

reaction problem of Robertson: 

                                                     

                                                        
 

  

 

  

 

   

      

                                                                                          

  

                                                                                         

 

[27] 

7 The SIR model is an 

epidemiological model that 

computes the theoretical 

number of people infected with 

a contagious illness in a closed 

population over time. The name 

of this class of models derives 

from the fact that they involve 

coupled equations relating the 

number of susceptible people 

S(t), number of people infected 

I(t) and the number of people 

who have recovered R(t). 

Defined as: Y  S  I  R, the 

evolution equation is 

 with 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[7] 
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Table 2: Comparison between the absolute error and CPU time for problem 1 at various values of  

 

                     Method                  Absolute Error                   CPU time 

               Proposed method                                   0.1053 

               [5]                                                          0.1241 

      [6]                                                            0.1023 

               [7]                                                           0.1044 

   Proposed method                                     0.0944 

               [5]                                                           0.0970 

      [6]                                                           0.0849 

               [7]                                                           0.0960 

              Proposed method                                     0.0863 

               [5]                                                           0.0904 

      [6]                                                             0.0908 

               [7]                                                           0.0893 

 

Table 3: Comparison between the absolute error and CPU time for problem 2 at various values of  

 

                       Method                  Absolute  Error                      CPU time 

              Proposed method                                        0.073253 

               [5]                                                              0.088921 

        [6]                                                                 0.081897 

               [7]                                                              0.087229 

              Proposed method                                        0.072765 

               [5]                                                             0.087937 

      [6]                                                              0.080570 

               [7]                                                              0.081080 

            Proposed method                                          0.069652 

              [5]                                                               0.085403 

     [6]                                                               0.083292 

              [7]                                                               0.080763 
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Table 4: Comparison between the absolute error and CPU time for problem 3 at various values of  

 

                   Method                            Absolute Error                 CPU time 

                     Proposed method                                   0.1371 

                     [5]                                                          0.2311 

             [6]                                                              0.1577 

                     [7]                                                          0.1630 

                   Proposed method                                    0.1008 

                     [5]                                                          0.1725 

            [6]                                                          0.1247 

                     [7]                                                          0.1288 

                  Proposed method                                      0.0765 

                    [5]                                                           0.0875 

           [6]                                                             0.0934 

                    [7]                                                           0.0909 

 

Table 5: Comparison between the absolute error and CPU time for problem 4 at various values of  

 

                       Method                          Absolute Error                CPU time 

                    Proposed method                                    0.0856 

                     [5]                                                         0.1140 

             [6]                                                            0.0862 

                     [7]                                                         0.0965 

                 Proposed method                                      0.0918 

                    [5]                                                          0.0944 

           [6]                                                          0.0939 

                    [7]                                                          0.0949 

                 Proposed method                                     0.0906 

                    [5]                                                         0.0921 

           [6]                                                          0.0916 

                    [7]                                                        0.0940 
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Table 6: Comparison between the absolute error and CPU time for problem 5 at various values of  

 

                Method                                       Absolute Error                CPU time 

                 Proposed method                                            0.090094 

                  [5]                                                                  0.093049 

          [6]                                                                      0.095068 

                  [7]                                                                  0.092819 

               Proposed method                                              0.081289 

                 [5]                                                                   0.093814 

        [6]                                                                   0.086677 

                 [7]                                                                  0.088596 

              Proposed method                                               0.076882 

                [5]                                                                    0.093780 

       [6]                                                                     0.085224 

                [7]                                                                   0.091410 

 

Table 7: Comparison between the absolute error and CPU time for problem 6 at various values of  

 

                  Method                                  Absolute Error               CPU time 

                  Proposed method                                         0.0874 

                    [5]                                                              0.1559 

          [6]                                                               0.0946 

                   [7]                                                               0.1500 

                 Proposed method                                          0.0873 

                   [5]                                                               0.1269 

 [6]                                                                0.1085 

                   [7]                                                               0.1100 

 

 

Table 8: Comparison between our method and other established methods for problem 7. 

 

                             Method                       Absolute  Error                   CPU time  

                           NANNM [28]                                              0.1466 

                 OHBM5A [29]                                       0.1423 

                           Proposed HBM                                          0.0843 

                           NANNM [28]                                              0.0464 

                  OHBM5A [29]                                           0.0585 

                           Proposed HBM                                          0.0284 
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Abbreviations 

                                     Step Size, 

CPU                               Central Processing Unit, 

HBM                              Proposed Hybrid Block Method, 

NANNM                        New Adaptive Nonlinear Numerical Method, 

OHBM5A                      Optimized Hybrid Block Method with fifth-order, Adaptive and  

                                        fixed step-size.  

The figures presented below provide a graphical illustration of the maximum absolute errors 
obtained for Test Problems 1–7 using the proposed hybrid block method. These visualizations serve to 
demonstrate the accuracy and reliability of the developed numerical scheme when applied to different 
types of ordinary differential equations. Figures 3-7 display the maximum absolute error distribution 
for Problems 1-5 at a step size of , revealing that the error remains minimal and uniformly 
distributed across the integration intervals. Figure 8 presents the corresponding results for Problem 6 
at a step size of , where the method maintains excellent numerical stability with only slight 
variations in error magnitude. Similarly, Figures 9-10 illustrate the maximum absolute error for 
Problem 7, computed at , showing a consistent pattern of accuracy throughout the solution 
domain. Collectively, these figures confirm that the proposed method delivers high precision across all 
test cases. The close agreement between the numerical results and exact solutions provides the 
robustness and efficiency of the developed hybrid block scheme. 
 

 

Figure 3.  Efficiency curve for problem 1 at . 
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Figure 4.  Efficiency curve for problem 2 at . 

 

Figure 5.  Efficiency curve for problem 3 at . 

 

Figure 6.  Efficiency curve for problem 4 at . 
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Figure 7.  Efficiency curve for problem 5 at . 

 

Figure 8.  Efficiency curve for problem 6 at . 

 

Figure 9. NANNM curve for problem 7 at . 
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Figure 10. OHBM5A curve for problem 7 at .  

3.1. Discussion of results 
 

The use of an implicit solver in the proposed single-step hybrid block method significantly 
influences both accuracy and computational efficiency. Implicit solvers are generally more stable and 
permit larger step sizes without compromising accuracy. This enhanced accuracy results from the 
implicit formulation’s ability to effectively manage stiffness and suppress numerical instabilities 
commonly encountered in explicit schemes. However, this comes with a trade-off: implicit methods 
typically require solving nonlinear or linear systems at each step, leading to increased CPU time due to 
the additional computational overhead. Despite this, MATLAB implementation results demonstrate 
that the gain in accuracy often outweighs the modest increase in computational time, as evidenced by 
the error versus CPU time plots shown in Figures 3–10. The proposed method was compared with 
those in [5],  [6] and [7], considering both absolute error and CPU time for various step sizes . In 
addition, comparisons were made with two established methods: the New Adaptive Nonlinear 
Numerical Method (NANNM) [28] and the Optimized Hybrid Block Method with fifth-order, 
adaptive and fixed step-size (OHBM5A) [29]. The plots of time versus maximum absolute error for 
the proposed method across Problems 1–6 are shown in Figures 3–8, while corresponding results for 
the established methods for Problem 7 are presented in Figures 9–10. Overall, the proposed hybrid 
block method produced the smallest absolute errors compared to other methods, indicating that it 
competes favourably with existing approaches.  
 

4. Conclusion 
 

This paper introduces a computational hybrid block method with four intra-step points for 
solving first-order stiff and non-stiff differential equations. The method extends existing block hybrid 
schemes originally designed for delay ordinary differential equations and adapts them to stiff problems 
through interpolation techniques for terms not defined at grid points. 

Analytical properties such as zero-stability, consistency, convergence, and A-stability are 
rigorously established, confirming the method’s theoretical soundness. Numerical experiments on 
several benchmark problems validate the approach, showing that it achieves high accuracy (sixth-
order convergence) and competitive computational efficiency, outperforming existing methods in 
terms of absolute error and CPU time. 

Practically, the proposed method is significant for engineering, biological, and physical models 
where system dynamics depend on past states with processes that evolve at vastly different rates (some 
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components change very rapidly while others vary slowly). Its simplicity of implementation and 
robust stability characteristics make it well-suited for such applications. 

However, potential limitations include the implicit nature of the scheme, which may increase 
computational cost due to the need for solving algebraic systems at each step, and dependence on 
accurate interpolation for stiff terms, which can introduce minor errors if not handled carefully. 
Additionally, CPU times were not comprehensively or consistently reported, limiting full quantitative 
comparison of efficiency across all test cases. 

Overall, the paper makes a clear methodological contribution by extending hybrid block 
methods to a class of stiff and non-stiff differential equations, demonstrating strong performance and 
reliability for solving such problems. 
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