Localisation of Forest Fires by RFID Sensors Based on RSSI/AoA Combined with ANN

Authors

  • Konan Fernand Gbamele Félix Houphouët-Boigny National Polytechnic Institute, Yamoussoukro, Ivory Coast
  • Gnoléba Célestin Bogui San Pedro Polytechnic University, San Pedro, Ivory Coast
  • N’Golo Mamadou Kone Félix Houphouët-Boigny University, Ivory Coast

DOI:

https://doi.org/10.33736/jaspe.10687.2025

Abstract

Every year, African countries face the tragic loss of life and destruction of natural and personal property due to forest fires. This issue has been the subject of research for many years in an effort to find a solution. This article aims to study the application of 3D multilateration positioning based on a hybrid of received signal strength indicator (RSSI) and angle of arrival (AoA) (RSSI/AoA) using an artificial neural network (ANN) to optimise the position of Radio Frequency Identification (RFID) sensors for forest fire prevention/detection. The first approach is based on the most commonly used radio measurement techniques, such as the hybrid RSSI/AoA technique based on the linear least squares (LLS) method to find a solution that minimises the error in the position of the RFID reader. The second approach presents a method using an RNA to correct the observed RSSI/AoA measurements, thereby aiming to locate RFID sensors in forests where obstacles are present and may influence signals. The simulation results of the RNN model show the best performance, achieving a location error of 0.2208m using four RFID sensors. This research highlights the importance of selecting artificial intelligence models for monitoring forest fires around the world.

References

Bot, K., & Borges, J. G. (2022). A systematic review of applications of machine learning techniques for wildfire management decision support. Inventions, 7(1), 15. https://doi.org/10.3390/inventions7010015

Arteaga, B., Diaz, M., & Jojoa, M. (2020, December). Deep learning applied to forest fire detection. In 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 1-6), IEEE. https://doi.org/10.1109/ISSPIT51521.2020.9408859

Aryan, M. P., Srilakshmi, U., & Venkatesulu, D. (2022, July). Fire detection systems by using wireless sensors. In 2022 IEEE International Conference on Data Science and Information System (ICDSIS) (pp. 1-4). IEEE. https://doi.org/10.1109/ICDSIS55133.2022.9915930

Zhao, Y., Ma, J., Li, X., & Zhang, J. (2018). Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors, 18(3), 712. https://doi.org/10.3390/s18030712

Vijayalakshmi, S. R., & Muruganand, S. (2017, February). A survey of Internet of Things in fire detection and fire industries. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 703-707). IEEE. https://doi.org/10.1109/I-SMAC.2017.8058270

Colella, R., Catarinucci, L., & Grassi, G. (2025). Battery‐less RF‐powered circuits for non‐contact voltage monitoring of electric systems: Circuit modeling and SPICE analysis. International Journal of Circuit Theory and Applications, 53(2), 840-860. https://doi.org/10.1002/cta.4137

Subbarayudu, Y., Reddy, G. V., Bhargavi, J., & Latha, K. (2024). An efficient IoT-based novel approach for fire detection through Esp 32 microcontroller in forest areas. In MATEC Web of Conferences (Vol. 392, p. 01109). EDP Sciences. https://doi.org/10.1051/matecconf/202439201109

Daskalakis, S. N., Assimonis, S. D., Goussetis, G., Tentzeris, M. M., & Georgiadis, A. (2019, July). The future of backscatter in precision agriculture. In 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting (pp. 647-648). IEEE. https://doi.org/10.1109/APUSNCURSINRSM.2019.8889330

Costa, F., Genovesi, S., Borgese, M., Michel, A., Dicandia, F. A., & Manara, G. (2021). A review of RFID sensors, the new frontier of internet of things. Sensors, 21(9), 3138. https://doi.org/10.3390/s21093138

Farve, R. (2014). Using radio frequency identification (RFID) for monitoring trees in the forest: State-of-the-technology investigation. United States Department of Agriculture (USDA), Forest Service, National Technology & Development Program. Washington, DC, USA.

Bayo, A., Antolín, D., Medrano, N., Calvo, B., & Celma, S. (2010, June). Development of a wireless sensor network system for early forest fire detection. In European Workshop on Smart Objects: Systems, Technologies and Applications (pp. 1-7). VDE. ISBN:978-3-8007-3282-1

Dil, B., Dulman, S., & Havinga, P. (2006, February). Range-based localization in mobile sensor networks. In European Workshop on Wireless Sensor Networks (pp. 164-179). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11669463_14

He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003, September). Range-free localization schemes for large scale sensor networks. In Proceedings of the 9th annual international conference on Mobile computing and networking (pp. 81-95). https://doi.org/10.1145/938985.938995

Hada, R. P. S., & Srivastava, A. (2024). Dynamic cluster head selection in WSN. ACM Transactions on Embedded Computing Systems, 23(4), 1-27. https://doi.org/10.1145/3665867

Awad, A., Frunzke, T., & Dressler, F. (2007, August). Adaptive distance estimation and localization in WSN using RSSI measures. In 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007) (pp. 471-478). IEEE. https://doi.org/10.1109/DSD.2007.4341511

Wang, S., Jiang, X., & Wymeersch, H. (2022). Cooperative localization in wireless sensor networks with AOA measurements. IEEE Transactions on Wireless Communications, 21(8), 6760-6773. https://doi.org/10.1109/TWC.2022.3152426

Xu, E., Ding, Z., & Dasgupta, S. (2011). Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Transactions on Signal Processing, 59(6), 2887-2897. https://doi.org/10.1109/TSP.2011.2116012

He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. F. (2005). Range-free localization and its impact on large scale sensor networks. ACM Transactions on Embedded Computing Systems (TECS), 4(4), 877-906. https://doi.org/10.1145/1113830.1113837

Zaidi, S., El Assaf, A., Affes, S., & Kandil, N. (2016). Accurate range-free localization in multi-hop wireless sensor networks. IEEE Transactions on Communications, 64(9), 3886-3900. https://doi.org/10.1109/TCOMM.2016.2590436

Nikova, H., Yordanova, S., & Deliyski, R. (2023). Application of artificial neural network in wildfire early prediction systems, WSEAS Trans. Environ. Dev., 19, 1410‑1420. https://doi.org/10.37394/232015.2023.19.128

Barbosa, B. S. D. S., Cruz, H. A., Macedo, A. S., Cardoso, C. M., Fernandes, F. C., Eras, L. E., de Araújo J.P.L., Calvacante, G.P.S & Barros, F. J. (2024). Application of Artificial Neural Networks for Prediction of Received Signal Strength Indication and Signal-to-Noise Ratio in Amazonian Wooded Environments. Sensors, 24(8), 2542. https://doi.org/10.3390/s24082542

C. E. Greene, C.E. (2006). Area of Operation for A Radio-Frequency Identification (RFID) Tag In the Far-Field, PhD thesis, Univ. of Pittsburgh, Février.

Shi, W., Du, J., Cao, X., Yu, Y., Cao, Y., Yan, S., & Ni, C. (2019). IKULDAS: An improved k NN-based UHF RFID indoor localization algorithm for directional radiation scenario. Sensors, 19(4), 968. https://doi.org/10.3390/s19040968

Kim, S., Jeon, H., Lee, H., & Ma, J. S. (2007, January). Robust transmission power and position estimation in cognitive radio. In International Conference on Information Networking (pp. 719-728). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-89524-4_71

Kim, S., Jeon, H., & Ma, J. (2007, October). Robust localization with unknown transmission power for cognitive radio. In MILCOM 2007-IEEE Military Communications Conference (pp. 1-6). IEEE. https://doi.org/10.1109/MILCOM.2007.4455295

Griffin, J. D., Durgin, G. D., Haldi, A., & Kippelen, B. (2006). RF tag antenna performance on various materials using radio link budgets. IEEE Antennas and Wireless Propagation Letters, 5, 247-250.https://doi.org/10.1109/LAWP.2006.874072

Lendaris, G. G., Mathia, K., & Saeks, R. (1999). Linear Hopfield networks and constrained optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(1), 114-118. https://doi.org/10.1109/3477.740171

Manherz, R., Jordan, B., & Hakimi, S. (1968). Analog methods for computation of the generalized inverse. IEEE Transactions on Automatic Control, 13(5), 582-585. https://doi.org/10.1109/TAC.1968.1098973

Zhang, Y., Jiang, D., & Wang, J. (2002). A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Transactions on Neural Networks, 13(5), 1053-1063. https://doi.org/10.1109/TNN.2002.1031938

Downloads

Published

2025-10-31

How to Cite

Gbamele, K. F., Gnoléba Célestin Bogui, & N’Golo Mamadou Kone. (2025). Localisation of Forest Fires by RFID Sensors Based on RSSI/AoA Combined with ANN. Journal of Applied Science &Amp; Process Engineering, 12(2), 137–150. https://doi.org/10.33736/jaspe.10687.2025