Journal of Applied Science & Process Engineering
Vol. 12, No. 2, 2025

Localisation of Forest Fires by RFID Sensors Based on RSSI/A0A
Combined with ANN

Konan Fernand Gbamele” '/, Gnoléba Célestin Bogui® and N’Golo Mamadou Kone®
8Félix Houphouét-Boigny National Polytechnic Institute, Yamoussoukro, Ivory Coast
bSan Pedro Polytechnic University, San Pedro, Ivory Coast
“Felix Houphouét-Boigny University, Ivory Coast

Abstract

Every year, African countries face the tragic loss of life and destruction of natural and personal
property due to forest fires. This issue has been the subject of research for many years in an effort to
find a solution. This article aims to study the application of 3D multilateration positioning based on a
hybrid of received signal strength indicator (RSSI) and angle of arrival (AoA) (RSSI/A0A) using an
artificial neural network (ANN) to optimise the position of Radio Frequency ldentification (RFID)
sensors for forest fire prevention/detection. The first approach is based on the most commonly used
radio measurement techniques, such as the hybrid RSSI/AoA technique based on the linear least
squares (LLS) method to find a solution that minimises the error in the position of the RFID reader.
The second approach presents a method using an RNA to correct the observed RSSI/A0A
measurements, thereby aiming to locate RFID sensors in forests where obstacles are present and may
influence signals. The simulation results of the RNN model show the best performance, achieving a
location error of 0.2208m using four RFID sensors. This research highlights the importance of
selecting artificial intelligence models for monitoring forest fires around the world.
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1. Introduction

Forest fires are a frequent occurrence around the world and contribute to climate change,
causing significant economic losses and ecological destruction [1]. Forest fires can be caused by
natural phenomena or human actions. The scale, intensity and duration of forest fires have continued
to increase in recent years [2]. Climate change will continue to increase the risk of forest fires
worldwide due to prolonged hot and dry periods. One of the causes is the reduction of forests due to
forest fires, which exacerbates the impact of global warming [3]. In addition, forest fires are
unpredictable and uncontrolled, posing a serious threat to the lives of communities [4]. These forest
fires cause erosion that can lead to flooding and landslides, threatening the lives of local populations.
Forest fires can occur as a result of climate change and cause significant environmental damage. It is
therefore essential to identify forest fire detection as one of the dynamic challenges of environmental
management. The need to observe, remotely monitor and retrieve data from a complex and distributed
environment is growing rapidly, especially with recent advances in Internet of Things (loT)
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technologies using sensor networks in recent decades. In this type of network, sensors exchange
information about the environment in order to establish an overall view of the monitored area. The
sensors are miniaturized autonomous systems equipped with a data processing and storage unit and a
wireless transmission unit, which may or may not be battery-powered. The sensors (or nodes) in a
sensor network collect information on factors such as temperature changes, movements, vibrations,
humidity, etc. Advances in wireless technologies, such as wireless sensor networks (WSNSs), have
contributed to the development of 10T solutions for a number of industrial sectors. Additional
technologies and devices, such as barcodes, smartphones, social networks, IPv6, mobile
communication, radio frequency identification (RFID), Wi-Fi, WiMax, and cloud computing, support
loT applications [5]. RFID is essential to building the 10T, which is important for promoting the
flourishing development of next-generation information technology. RFID sensors are widely used in
many areas of identification due to their contactless nature, low power consumption, and the speed
with which they can recognize targets. RFID technology has emerged as a transformative force and
has made substantial inroads into the forestry sector, where it is catalyzing revolutionary advances in
forest management practices [6]. A system using RFID temperature sensors could support early and
rapid response to forest fires, saving lives and reducing damage.

Although RFID technology has demonstrated great potential in various applications, its
adoption for forest fire detection is relatively limited. Research is underway to fully explore the
potential of RFID technology, including the use of RFID sensors, for effective fire detection in these
environments. The lack of reliable and effective forest fire detection systems makes RFID technology
a more reliable and effective system, capable of accurately detecting fires in real time. RFID is one of
the assets for solving problems such as high false alarm rates, long response times and limited
coverage. In addition to the lack of detection systems, there are also issues with limited or unreliable
network connectivity, environmental factors affecting the accuracy of fire detection, and integration
with emergency response systems, which further complicate the deployment of energy-efficient fire
detection systems [7]. Furthermore, energy constraints in remote areas further complicate the
deployment of energy-efficient fire detection systems.

Research is currently underway to explore how an loT-based fire detection system can be
integrated with existing emergency response systems, enabling faster and better coordinated action.
The importance of forest fire monitoring stems from the significance of forest resources and the
destructive impact of forest fires on climate change. RFID technology is of strategic importance in
modernizing fire monitoring in the forestry sector. Two popular approaches are predicting the
likelihood of a fire in an area and detecting forest fires in their early stages through associated gas and
aerosol emissions and temperature increases. Fires in their early stages are easier to control and
mitigate. RFID's ability to tag, track and monitor assets in real time [8] [9] provides forest managers
with a powerful tool for optimizing their operations. In [10], a system can be used for forest fire
monitoring. This system uses trees from a plot that can be tagged with inexpensive and durable RFID
tags that can store data on most tree characteristics. In [11], RFID sensors are used for early detection
of forest fires in order to obtain real-time information for monitoring the surrounding area in the event
of a fire and generating alerts.

It is crucial to note that the precise location plays a vital role in an area covering several square
kilometers of forest. While the base station may detect that a fire has occurred, it is unable to pinpoint
its exact location. Satellite images and drones are sometimes used to locate fires, but they are only
effective once the fire has reached a certain size and is visible above the trees, by which time
significant damage has already been done. They are not useful for early fire detection systems. The
approach taken by these techniques is to use sensors whose locations are known, called reference
sensors, and to calculate the locations of unknown sensors relative to the reference sensors.
Localization techniques fall into two categories: range-based [12] and non-range-based [13]. Range-
based techniques [14] use hardware devices to determine the relative positions of unknown nodes with
respect to beacon nodes by measuring the distance between them. Factors such as received signal
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strength indicator (RSSI) [15], angle of arrival (AoA) [16] and time of arrival (ToA) [17] are used to
calculate this distance. Range-free techniques [18] use information such as node identifiers,
connection patterns or topological data [19] to estimate the location of the sensor. The techniques
proposed to date suffer, to some extent, from localization errors.

Several challenges must be addressed. The implications of climate change and the resulting
increase in fire risk require adaptation strategies. Recently, artificial intelligence (Al) has emerged as a
promising tool for improving accuracy in loT design. Despite various technological and management
approaches to forest fire prediction and detection, the results obtained remain insufficient. There is
therefore a need to improve existing methodologies and develop new ones to better protect forest
ecosystems. Among the most recent models is an artificial neural network (ANN) model [20]. A study
conducted in [21] investigated the influence of wooded areas, particularly the Amazon rainforest. The
localization method is based on the collection of received signal strength indicators (RSSI) combined
with artificial neural networks (ANN) to predict signal strength in an Amazonian forest environment.
This method can be used for forest fire detection.

Locating sensors is a difficult task, particularly when the sensor network is deployed over a
large area (Figure 1). In Figure 1, a network of randomly deployed RFID sensors is used for early
detection of forest fires. An ideal forest fire monitoring system should be able to monitor a large area
(spatial coverage) with reasonable frequency (temporal coverage).
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Figure 1. Diagram of the RFID system for forest fire detection

The rest of the article is organized as follows. Section Il presents the conventional localization
algorithm based on RSSI/A0A hybrid data collection. Section Il describes the positioning field
concepts and the RSSI/A0A hybrid method based on artificial neural networks (ANN) used in this
document. Section IV describes the system model and methods used in this document. Finally,
conclusions and prospects for future work are presented in Section IV.

2. Hybrid AoA/RSSI reader localization using 3D multilateration.

In this study, the problem of distributed target location based on RSS and AoA measurements is
addressed. Multilateration is a method for predicting position using a hyperbolic algorithm.
Multilateration estimates the coordinates of the target node (reader) from the distances between the
target node (reader) and n reference nodes (RFID sensors) whose coordinates are known in a forest
area of interest. Figure 2 shows how the position of the RFID reader can be estimated using the
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Multilateration method, where the distance from the reader to the reference points (RFID sensors)
Sensorl (x,.v,.z,), Sensor 2 (x..yv..z.}, Sensor 3 (x.y.z,) and Sensor 4 (x,.y,.z,) iS estimated
respectively with distances d,, d., €, and d, in the forest area for forest fire detection.

The different powers of the RSS and their different angles of arrival: angle of arrival (AoA) of
each sensor antenna.

Reader Location by Multilateration
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Figure 2: Estimating the position of the RFID reader using multilateration (3D)

Figures 3 and 4 show that the gains of the RFID reader antenna and the RFID sensor antenna
have a direct impact on the accuracy of the reader's RSSI. Therefore, obtaining accurate expressions
for the gain of the reader antenna and the RFID sensor antenna is crucial for RSSI estimation. Antenna
gains depend on the positions of the sensor and reader antennas. In this study, as is the case in forested
areas, the reader is mounted on a radio tower at a height above the sensors. In addition, the reader
antenna radiates downwards, as shown in Figures 1 and 4.

The angular gains or angles of arrival (AoA) of the patch antenna for the G, 4. (8. ;) and
the dipole antenna for the G, ..., (8:. @) are expressed in the work of [22].
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(a) : Reader’s antenna with patch (b) : RFID sensor antenna

Figure 3. Spherical coordinates of the antennas: (a) Reader antenna with square patch; (b) RFID sensor
antenna.

The gain of a reader patch antenna as a function of the angle of arrival (AoA) can be expressed
as:
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Gregaer (Ba. ) = Gy = 3,136[tan(8y) = sin(0,57 * cos(8g)) * cos(0.57 * sin(fy) = sin(¢z))]° (1)
The gain of a half-wavelength sensor antenna can be expressed as:

Geensor Br . @r) = Gr = 1,641 = [cos(0,57 cos(8; 1)]* /(sin (8r)° (2)

The spatial relationship between the sensor antenna and the reader antenna is described in the
work of [23][23]:

RFID reader

(¥ Ye.22)

Zy

L

Sensor

' Pr

Figure 4: Cartesian coordinate system for characterizing the sensor and reader.

Where:
(xr.vr. 2 ). coordinates of the RFID sensor; (x,.vs.zz): coordinates of the reader.
(¥a. wg). position of the reader; (yr. @;): position of the sensor.

Let & , 8; , ¢ and ¢, be the respective sets of true azimuths and elevations describing the
angles of arrival (AoA) of a wireless signal for each of the RFID sensors. These pairs of angles can be
expressed geometrically as a function of the positions of the corresponding sensors. The gains
Geomeor LBr. @) aNd G, (Bg.5) are determined by referring to the direct line of sight as the object
of analysis. The expressions for the angles of arrival (AoA) &, ¢ and & given in the work of [23]:

8, = arcos (- mw;}“ = 3)
ty = 0,57 — (arctan (IH = a':‘:'” mw""] +¥z) @)
E’_I' = arcos I:EI.'-:'J cos@r—Yr1 31”:"] J OO Fr +Zg T EI0 ¥y :I (5)
With
I " " "
d= \IIIR'T‘FJ}ET + 20 Xpr = Xg— X7, ¥ar =¥ — ¥r, Zar = Zgp — Er. (6)

By inserting equations (3) and (4) into equation (1), and equation (5) into equation (2), the
expressions for Gy (67,¢1) and Gg (85, dz) can be obtained as functions of (x5, Vgr 2z, ¥) and
(Xr1)¥RTr ZRTH @R/ YR), TESPECtiVEly.

Various parameters including the distance and RSSI between the reader and the target sensor are
then calculated based on the indication of the received signal strength and the angle of arrival (AoA).
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Position determination requires both the angle of arrival (AoA) and range. The latter is calculated
from the absolute values of RSSI, so this value is more sensitive to RSSI measurement uncertainties.

In (9), the unknown is the reader's position (X, y, z). For N RFID sensors, we obtain N systems
of equations (13). Locating the sensors using the multilateration method consists of solving the system
of N equations. Next, we formulate the estimation problem and transform it into a linear equation. We
formulate the estimation problem using the conventional methods of [24] [25] [26]:

Taking into account the shadowing effect using the log-normal path loss model, the power
received by the reader from each RFID sensor is expressed by relation (7):

Pl_rpcr:dpr =K Fix i=1,2,.., N. ™)

T
dfs;

where §; = 10%*: is a log-normal random variable, X; is a Gaussian random variable with mean
zero and variance = , and the other parameters are the same as in relation (7).

1 A 4 7 7
Kz' = T.G2 (;) E;ng[(;;andar[ (8)
With
T, = 1/3: represents the system losses in both the sensor and reader;
G, = 0.01: gain penalty.

To minimize the undesirable effect of shadowing, the RSS values (F¢222#" values) as a function
of the arrival (AoA) are averaged as shown in relation (9):

K ['I-J-’i':+'J‘—J‘c':+'3—xc':]:m -
FE'::::i:l' - P ,|—1,2,.., N (9)
Taking the power 2/a on both sides, we obtain:
Xa 5 5 5
Ki _ lr—x )l ly—y +le-gg” L
(FE'::::icr] - P”::_.g y |—1,2,.., N (10)

o 5 5 - - 5 =
( K :I XY +E XX IVY-IEEHX; +V[YE]

2z
Frx

 i=1,2,.., N (11)

By isolating the term x7 + y7 + =7, we obtain:

fa )
.r|: +.'-"|': +z|-: = 2xx;+ 2yy; + 225 + (ﬁ) Prx:m — (x* +J': -I-z:], i=l,2,.., N. (12)

Since this last equation is valid for each node, it can be extended to all nodes and expressed in
matrix form as follows:

- - r T
Exi ZVJ_ 221 (P!.EI:;ER?’) -1 . . .
-K "ia v x@‘ —|-_1_J£ -I—z%
2x; 2y, 2z, (Fr—) -1 z_ = %2ty t25 (13)
: . [:Ftr]_m - :,. -
: : : e (e[ \x? 4yt 422 Xy + ¥yt Zy
2xy 2yy 22y (R}—) —1]

Finally, the formulation of the estimation problem and its transformation into matrix form:

AX = b (14)
A simple approach to solving a system of linear equations is to use the LS method. The LS
solution to the above system is as follows:
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¥ =(ATA) 14T (15)

The estimation problem formulated as a matrix can be easily solved using the least squares
method to minimize the disturbances caused by the shadowing effect in the measurements. This linear
equation can be solved using the least squares method. The solution to relation (14) provides not only
the position of the transmitter, but also its EIRP. In particular, the value (&, }*/ is found. Once solved,
the quantities x, y, and F., obtained are called x,., y.er, Z.se, and F,..., respectively. A solution for
better performance with respect to the mean square error (MSE) can be obtained.

To evaluate the performance of RSSI/AoA-based localization, the mean square error (MSE) for
the reader position and the mean absolute power estimation error (PEE) are used. The mean square
error (MSE) is defined by the relationship:

[ -
L Neim |

EMSE = m Er’!:j_ \ {.r - x?xrn}- + {J' — Yest r!}- + {z — Zgst r!}- (16)
Where:

(x.y.z) is the true position of the reader; (x .z . Yesr n-Zesrn) 1S the nth estimate of the reader's
position; N is the number of simulations runs.

The mean absolute power estimation error (PEE) is then defined by the following relationship:

€pEE — ﬁ E::jl_l |Prx - Ppsr n | (22)
Where:
P.. = 1W is the true EIRP (Effective Isotropic Radiated Power) of the transmitter.

P..: » is the nth estimate of the EIRP.

Location simulation is applied to estimate the position. All results are obtained by running the
simulation for 10 iterations and averaging the results. The four RFID sensors are placed within the
reader's coverage area, as shown in Figures 1 and 2. The RFID sensors are placed on the trees at the
same height and therefore have fixed positions. The four RFID sensors are placed in the following
positions: RFID sensor 1 (7m, 10m, 0.5m); RFID sensor 2 (25m, 30m, 0.5m); RFID sensor 3 (10m,
30m, 0.5m); RFID sensor 4 (30m, 40m, 0.5m) and the reader mounted on occupies the position (5m,
15m, 10m) to identify the RFID sensors in its coverage area.

It is assumed that the parameter K; representing the factors affecting the RSS+A0A values at
the j-th sensor are a function of the sensor positions and the different gains, that the path loss exponent
a is equal to 3, and that the sensor positions are those indicated in. It is also assumed that the EIRP of
the RFID reader is 1W.

Figures 5 and 6 show the plots of the MSE and PEE position estimates as a function of the
number of iterations. In this model, X; (X, ) is a random variable with a standard deviation o, which
affects the RSSI value and thus influences the estimated mean localization error. As shown in Figures
5 and 6, the simulation is performed with four (4) RFID sensors deployed with different standard
deviations (o) to study the estimated average location error. The number of sensors and readers in
these simulations is fixed. The convergence of the hybrid RSSI/AoA method in terms of the number
of iterations is evaluated.
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Figure 6: Absolute power estimation error as a function of the number of iterations for shadowing
standard deviations 6=3dB and c=6dB.

According to Figure 5, tracking errors in terms of MSE can be significantly reduced after 3
iterations. The MSE of the estimated position decreases as the number of iterations increases.
Performance is further improved and stabilized with 10 iterations. The simulation results of the hybrid
RSSI/AoA method for the estimated MSE after 10 iterations are respectively MSE=3.57455m for
0=3dB, MSE=3.577456m for c=6dB. Furthermore, even though the standard deviations of the hybrid
method are different, the convergence behavior is very similar.

Figure 6 shows the effects of the number of iterations on the mean power estimation error for
different values of the standard deviation ¢ where 6=3dB and c=6dB (i.e. measurements with noise).
In particular, the mean absolute power estimation error decreases as the number of iterations
increases. The simulation results of the hybrid RSSI/AoA method for the estimated power after 10
iterations are respectively PEE=0.900279W for 6=3dB and PEE=0.90029W for c=6dB.
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3. Localization using the RSSI/A0A hybrid based on ANN

RSSI/A0A hybrid-based localization has certain drawbacks, such as the risk of errors caused by
environmental factors such as dirt, extreme temperatures, the enormous volume of data that is difficult
to manage, and the need for longer read ranges due to the reduction in signal strength caused by
propagation through vegetation cover. However, improvements in machine learning and statistical
modelling methods are helping to increase the accuracy of RFID systems.

Finding an algorithm that avoids all these problems is not easy and requires considerable
resources in all cases. That is why this article proposes the use of artificial neural networks as an
approach to systematically solve the problem of detection errors and fire location. ANNs not only
have the ability to process noisy RSSI+A0A measurements, but they also have the ability to learn and
be trained quickly. However, the choice of ANN type for the application of forest fire prevention to
combat global warming has to be appropriate. The input to the proposed ANN architecture consists of
the RSSI/A0A measurements received from the four RFID sensors, i.e. RSSI+A0A (1), RSSI +A0A
(2), RSSI AoA (3) and RSSI+A0A (4), while the x, y and z coordinates of the target (RFID reader)
constitute the output using the Hopfield neural network as illustrated in Figure 7. The implementation
of the Hopfield network is called a generalized linear neural network (GLNN) [27]. The generalized
linear neural network (GLNN) is an extension of the Hopfield neural network that uses linear
activation functions.

In the literature, conventional continuous-time gradient-based Hopfield neural networks [28]
[29] have been developed and extensively studied for solving linear systems (27).

RSST+AoA (1) —O\
RSST+AoA (2) RFID

location (x,v,z)

reader
RSSI+A0A (3)
RSSI+AoA (4)

Input Output

Figure 7: HNN architecture for reader (target) localization

The design procedure is summarised as follows. The normalised scalar quadratic minimisation
error function is defined using Equation 23:

MSE = =||Ax — b]|2 (23)

Where AeR™"™ with m<n is the rectangular real matrix of the model; beR**™ is the vector of
observations or measurements; and X = [x,v, z]7 is the unknown vector of system parameters to be
estimated for the position of the RFID reader in the forest coverage area. Thus, the weight update
formulas and the update vector for the HNN model shown in Figure 7 are given by equations (24) and
(25), respectively:

w(k +1) = w(k) — nAT(Aw(k) — b) (24)

And

Xz = (b—mATA)x, + ATh (25)
.t
Zrrace(d4")

With n = 0 : the learning rate of the network, n =
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The coefficients A and b used in the hybrid RSSI/AoA approach, as well as a weight update
matrix given by equation 24, are generated in the simulations during the RNA tests. The path loss
assumptions are those of equation 8, and the path attenuation exponent 0=3 for all simulations. The
noise model is given by the random variable X, (X ;) with standard deviations 6c=3dB and 6=3dB for
all simulations.

The four RFID sensors are placed within the reader's coverage area, as shown in Figures 1 and
2. The RFID sensors are placed on the trees at the same height and therefore have fixed positions. The
four RFID sensors are placed in the following positions: RFID sensor 1 (7m, 10m, 0.5m); RFID
sensor 2 (25m, 30m, 0.5m); RFID sensor 3 (10m, 30m, 0.5m); RFID sensor 4 (30m, 40m, 0.5m) and
the reader mounted on occupies the position (5m, 15m, 10m) to identify the RFID sensors in its
coverage area.

The position of the reader varies randomly, and each time the identification of the RFID sensors
by the reader is estimated using equation (15). In this hybrid approach, the Hopfield-type neural
network is used to estimate the position and correct it. RSSI + AoA + HNN-based localisation is
implemented by solving equation (14). A localisation simulation is applied to estimate the position
and EIRP of the RFID reader. All results are obtained by running the simulation 10 iterations and
averaging the results. As indicated in Section 2, we assume that the parameter K; representing the
factors affecting the RSS+AoA+HNN values at the j-th sensor are a function of the sensor positions
and different gains, that the path loss exponent o is equal to 3, and that the sensor positions are those
indicated in. We also assume that the EIRP of the RFID reader is 1W.

Figure 8 shows the convergence of neural weights. It can be seen in Figure 9 that most weights
converge to relatively larger values, while only partial weights remain in the vicinity of zero. Based on
Figure 8, it can be concluded that not only the HNN weights converge towards their ideal values, but
also that the convergent weights may well approach the non-linear function for the location of the
RFID reader.
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Figure. 8. Convergence of the RSSI+A0A+HNN weights.
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Figure 9 shows the curve MSE plotted as a function of the number of iterations for the Hopfield
type neural network. It is observed that the mean square error for the estimated values of the location
of the RFID reader decreases with the number of iterations, which confirms the effectiveness of the
Hopfield-type neural network in finding the optimal solution.

0.42 T T

MSE

0.22 1 1 1 T Y ! : .
1 2 3 4 5 6 7 8 9 10

Iterations through Hopfield Network

Figure 9. Root mean square error for the estimated reader position via the Hopfield network

Figure 10 compares the mean square errors (MSE) as a function of the number of iterations of
the hybrid RSS/A0A method and the RSSI+AoA+HNN method, respectively.
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Figure 10: Comparison of overall performance between RSS/A0A and RSSI+A0A+HNN based on the
number of iterations for standard deviations 6=3dB and c=6dB
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Figure 10 compares the mean square error (MSE) of the RSS/A0A hybrid and the proposed
RSS+Ao0A+HNN positioning algorithm. For the tenth iteration, we obtain an MSE of 3.5755m and
3.57456m, respectively, for the respective standard deviations 6=3dB and c=6dB for the RSS +A0A
algorithm, while RSS+A0A+HNN obtains a much lower MSE of 0.2208m for all standard deviations.
This indicates that the proposed RSS+AoA+HNN algorithm achieves a lower estimation error and
therefore offers greater accuracy than RSS+A0A. The use of distance and angle measurements
combined with the artificial neural network allows for more accurate localization of forest fires in
order to combat global warming.

4. Conclusion

In this article, an artificial system was proposed to detect and correct the RSSI+A0A values of
RFID sensors used to locate forest fires in order to combat global warming. This model, based on an
artificial neural network, enables the prediction of forest fires and was developed for the first time.
The results showed a significant improvement in range and position accuracy compared to the hybrid
RSSI+A0A method. It was observed that the proposed method improves localization solutions in
complex forest environments by taking into account path loss and the shadowing effect. Thus, the
proposed model, RSSI+AoA+HNN, achieved better accuracy, with MSE values of 0.2208m with
standard deviations of 3dB and 6dB, respectively, to improve the RSSI+A0A hybrid influenced by
environmental parameters.

For future work, several improvements could be made to the current work. First, the proposed
system should be trained and tested in increasingly complex dynamic areas and scenarios. Secondly,
the system should be tested in real-world environments that are more complex than those tested in this
article, with real traffic and multiple obstacles. Training the ANN to identify multiple human obstacles
is one of the most important areas of research, along with other Al algorithms.
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