BREAKING THE VIRTUAL WALL: WHY BUSINESSES RESIST METAVERSE IN THE RETAIL INDUSTRY?

Authors

  • Wenjie Li UCSI Graduate Business School, UCSI University, Kuala Lumpur, Malaysia
  • Tat-Huei Cham UCSI Graduate Business School, UCSI University, Kuala Lumpur, Malaysia Faculty of Business, Design, and Arts, Swinburne University of Technology - Sarawak Campus, Kuching, Malaysia Tashkent State University of Economics, Tashkent, Uzbekistan Universitas Multimedia Nusantara, Tangerang, Indonesia Faculty of Business, Sohar University, Oman
  • Yanyan Zhang School of Economics (School of Sci-tech and Finance), Shandong Women’s University, Jinan, China
  • Ika Yanuarti Loebiantoro Universitas Multimedia Nusantara, Tangerang, Indonesia
  • Sanjar Mirzaliev Tashkent State University of Economics, Tashkent, Uzbekistan

DOI:

https://doi.org/10.33736/ijbs.9567.2025

Keywords:

Metaverse, TOE Framework, Resistance, Retailing, Non-Adoption Intention, Emerging Economies

Abstract

While the metaverse is considered the next big thing associated with the information system ecosystem, this disruptive technology has not been widely adopted by many of the enterprises to date. Given its potential to drive the success of businesses as evidence across literature, this study aims to investigate retail enterprises’ non-adoption intentions toward the metaverse. The Technology, Organisation, and Environment (TOE) framework is used as an underpinning theory to examine the impact of various barriers on non-adoption intention towards the metaverse. Data were collected from 400 large- and medium-sized retail enterprises in China and analysed using partial least-squares structural equation models (PLS-SEM) to ensure reliability and test hypotheses. The findings indicate that both technological barriers (i.e., perceived complexity and perceived risk), organisational barriers (i.e., a lack of top management support), and environmental barriers (i.e., a lack of governance and standardisation) were found to have a significant effect on resistance to the adoption of the metaverse in retailing, which in turn significantly influenced non-adoption intentions. It is believed that the findings from this study will provide a better understanding of the metaverse's adoption from a business organisation's perspective and its impact on related stakeholders.

References

Abed, S. S. (2020). Social commerce adoption using TOE framework: An empirical investigation of Saudi Arabian SMEs. International Journal of Information Management, 53, 102118. https://doi.org/10.1016/j.ijinfomgt.2020.102118

https://doi.org/10.1016/j.ijinfomgt.2020.102118

Abumalloh, R. A., Nilashi, M., Ooi, K. B., Wei-Han, G., Cham, T. H., Dwivedi, Y. K., & Hughes, L. (2024). The adoption of metaverse in the retail industry and its impact on sustainable competitive advantage: moderating impact of sustainability commitment. Annals of Operations Research, 342(1), 5-46. https://doi.org/10.1007/s10479-023-05608-8

https://doi.org/10.1007/s10479-023-05608-8

Abu-Shanab, E., Al-Sharafi, M. A., & Al-Emran, M. (2024). The influence of network externality and fear of missing out on the continuous use of social networks: a cross-country comparison. International Journal of Human-Computer Interaction, 40(15), 4058-4070. https://doi.org/10.1080/10447318.2023.2208990

https://doi.org/10.1080/10447318.2023.2208990

Ali, M., Zhou, L., Miller, L., & Ieromonachou, P. (2016). User resistance in IT: A literature review. International Journal of Information Management, 36(1), 35-43.

https://doi.org/10.1016/j.ijinfomgt.2015.09.007

Al-Sharafi, M. A., Al-Emran, M., Al-Qaysi, N., Iranmanesh, M., & Ibrahim, N. (2024). Drivers and barriers affecting metaverse adoption: A systematic review, theoretical framework, and avenues for future research. International Journal of Human-Computer Interaction, 40(22), 7043-7064. https://doi.org/10.1080/10447318.2023.2260984

https://doi.org/10.1080/10447318.2023.2260984

Bag, S., Rahman, M. S., Gupta, S., & Wood, L. C. (2023a). Understanding and predicting the determinants of blockchain technology adoption and SMEs' performance. The International Journal of Logistics Management, 34(6), 1781-1807. https://doi.org/10.1108/IJLM-01-2022-0017

https://doi.org/10.1108/IJLM-01-2022-0017

Bag, S., Rahman, M. S., Srivastava, G., & Shrivastav, S. K. (2023b). Unveiling metaverse potential in supply chain management and overcoming implementation challenges: an empirical study. Benchmarking: An International Journal, 32(11), 79-108.https://doi.org/10.1108/BIJ-05-2023-0314

https://doi.org/10.1108/BIJ-05-2023-0314

Ball, M. (2022). The Metaverse: And How It Will Revolutionize Everything. Liveright Publishing.

Bhattacharya, S., & Chatterjee, A. (2022). Digital project-driven supply chains: A new paradigm. Supply Chain Management: An International Journal, 27(2), 283-294.

https://doi.org/10.1108/SCM-12-2020-0641

Cham, T.-H., Cheah, J.-H., Cheng, B.-L., & Lim, X.-J. (2022a). I am too old for this! Barriers contributing to the non-adoption of mobile payment. International Journal of Bank Marketing, 40(5), 1017-1050. https://doi.org/10.1108/IJBM-06-2021-0283

https://doi.org/10.1108/IJBM-06-2021-0283

Cham, T.-H., Lim, Y.-M., & Sigala, M. (2022b). Marketing and social influences, hospital branding, and medical tourists' behavioural intention: Before‐and after‐service consumption perspective. International Journal of Tourism Research, 24(1), 140-157.

https://doi.org/10.1002/jtr.2489

Cham, T.H., Cheah, J.H., Memon, M.A., Fam, K.S., & J László, J. (2022c). Digitalization and its impact on contemporary marketing strategies and practices. Journal of Marketing Analytics, 10, 103-105.

https://doi.org/10.1057/s41270-022-00167-6

Cham, T. H., Wei-Han Tan, G., Aw, E. C. X., Ooi, K. B., Jee, T. W., & Pek, C. K. (2024). Virtual reality in tourism: adoption scepticism and resistance. Tourism Review, 79(2), 337-354. https://doi.org/10.1108/TR-10-2022-0479

https://doi.org/10.1108/TR-10-2022-0479

Chatterjee, S., Ghosh, S. K., & Chaudhuri, R. (2020). Knowledge management in improving business process: An interpretative framework for successful implementation of AI-CRM-KM system in organizations. Business Process Management Journal, 26(6), 1261-1281. https://doi.org/10.1108/BPMJ-05-2019-0183

https://doi.org/10.1108/BPMJ-05-2019-0183

Chatterjee, S., Rana, N. P., Dwivedi, Y. K., & Baabdullah, A. M. (2021). Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170, 120880. https://doi.org/10.1016/j.techfore.2021.120880

https://doi.org/10.1016/j.techfore.2021.120880

Choi, D., Chung, C. Y., Seyha, T., & Young, J. (2020). Factors affecting organizations' resistance to the adoption of blockchain technology in supply networks. Sustainability, 12(21), 8882. https://doi.org/10.3390/su12218882

https://doi.org/10.3390/su12218882

Chouk, I., & Mani, Z. (2019). Factors for and against resistance to smart services: Role of consumer lifestyle and ecosystem-related variables. Journal of Services Marketing, 33(4), 449-462. https://doi.org/10.1108/JSM-01-2018-0046

https://doi.org/10.1108/JSM-01-2018-0046

Coldham, G., & Cook, D. M. (2017). VR usability from elderly cohorts: Preparatory challenges in overcoming technology rejection. 2017 National Information Technology Conference (NITC), 131-135. Dehghani, M., William Kennedy, R., Mashatan, A., Rese, A., & Karavidas, D. (2022). High interest, low adoption: A mixed-method investigation into the factors influencing organisational adoption of blockchain technology. Journal of Business Research, 149, 393-411. https://doi.org/10.1016/j.jbusres.2022.05.015

https://doi.org/10.1016/j.jbusres.2022.05.015

Dwivedi, Y. K., Hughes, L., Baabdullah, A. M., Ribeiro-Navarrete, S., Giannakis, M., Al-Debei, M. M., Dennehy, D., Metri, B., Buhalis, D., Cheung, C. M. K., Conboy, K., Doyle, R., Dubey, R., Dutot, V., Felix, R., Goyal, D. P., Gustafsson, A., Hinsch, C., Jebabli, I., … Wamba, S. F. (2022). Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 66, 102542. https://doi.org/10.1016/j.ijinfomgt.2022.102542

https://doi.org/10.1016/j.ijinfomgt.2022.102542

Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of Enterprise Information Management, 28(1), 107-130. https://doi.org/10.1108/JEIM-08-2013-0065

https://doi.org/10.1108/JEIM-08-2013-0065

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (Third edition). SAGE.

https://doi.org/10.1007/978-3-030-80519-7

Hair, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: Updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107. https://doi.org/10.1504/IJMDA.2017.087624

https://doi.org/10.1504/IJMDA.2017.087624

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.

https://doi.org/10.1108/EBR-11-2018-0203

Hajiheydari, N., Delgosha, M. S., & Olya, H. (2021). Scepticism and resistance to IoMT in healthcare: Application of behavioural reasoning theory with configurational perspective. Technological Forecasting and Social Change, 169, 120807. https://doi.org/10.1016/j.techfore.2021.120807

https://doi.org/10.1016/j.techfore.2021.120807

Heidenreich, S., & Handrich, M. (2015). What about passive innovation resistance? Investigating adoption‐related behavior from a resistance perspective. Journal of Product Innovation Management, 32(6), 878-903. https://doi.org/10.1111/jpim.12161

https://doi.org/10.1111/jpim.12161

Hollensen, S., Kotler, P., & Opresnik, M. O. (2022). Metaverse-the new marketing universe. Journal of Business Strategy, 44(3), 119-125. https://doi.org/10.1108/JBS-01-2022-0014

https://doi.org/10.1108/JBS-01-2022-0014

Hsu, C.-W., & Yeh, C.-C. (2017). Understanding the factors affecting the adoption of the Internet of Things. Technology Analysis & Strategic Management, 29(9), 1089-1102. https://doi.org/10.1080/09537325.2016.1269160

https://doi.org/10.1080/09537325.2016.1269160

Iqbal, M., Ma, J., Ahmad, N., Ullah, Z., & Hassan, A. (2023). Energy-efficient supply chains in construction industry: An analysis of critical success factors using ISM-MICMAC approach. International Journal of Green Energy, 20(3), 265-283. https://doi.org/10.1080/15435075.2022.2038609

https://doi.org/10.1080/15435075.2022.2038609

Iranmanesh, M., Lim, K. H., Foroughi, B., Hong, M. C., & Ghobakhloo, M. (2023). Determinants of intention to adopt big data and outsourcing among SMEs: Organisational and technological factors as moderators. Management Decision, 61(1), 201-222. https://doi.org/10.1108/MD-08-2021-1059

https://doi.org/10.1108/MD-08-2021-1059

Jalo, H., & Pirkkalainen, H. (2024). Effect of user resistance on the organizational adoption of extended reality technologies: A mixed methods study. International Journal of Information Management, 75, 102731. https://doi.org/10.1016/j.ijinfomgt.2023.102731

https://doi.org/10.1016/j.ijinfomgt.2023.102731

Joshua, J. (2017). Information bodies: Computational anxiety in Neal Stephenson's Snow Crash. Interdisciplinary Literary Studies, 19(1), 17-47. https://doi.org/10.5325/intelitestud.19.1.0017 Kim, J. (2021). Advertising in the metaverse: Research agenda. Journal of Interactive Advertising, 21(3), 141-144. https://doi.org/10.1080/15252019.2021.2001273

https://doi.org/10.1080/15252019.2021.2001273

Koller, M., Kantzer, V., Mear, I., Zarzar, K., Martin, M., Greimel, E., Bottomley, A., Arnott, M., Kuliś, D., & The ISOQOL TCA-SIG. (2012). The process of reconciliation: Evaluation of guidelines for translating quality-of-life questionnaires. Expert Review of Pharmacoeconomics & Outcomes Research, 12(2), 189-197. https://doi.org/10.1586/erp.11.102

https://doi.org/10.1586/erp.11.102

Koohang, A., Nord, J. H., Ooi, K.-B., Tan, G. W.-H., Al-Emran, M., Aw, E. C.-X., Baabdullah, A. M., Buhalis, D., Cham, T.-H., Dennis, C., Dutot, V., Dwivedi, Y. K., Hughes, L., Mogaji, E., Pandey, N., Phau, I., Raman, R., Sharma, A., Sigala, M., … Wong, L.-W. (2023). Shaping the metaverse into reality: A holistic multidisciplinary understanding of opportunities, challenges, and avenues for future investigation. Journal of Computer Information Systems, 63(3), 735-765. https://doi.org/10.1080/08874417.2023.2165197

https://doi.org/10.1080/08874417.2023.2165197

Kuisma, T., Laukkanen, T., & Hiltunen, M. (2007). Mapping the reasons for resistance to Internet banking: A means-end approach. International Journal of Information Management, 27(2), 75-85. https://doi.org/10.1016/j.ijinfomgt.2006.08.006

https://doi.org/10.1016/j.ijinfomgt.2006.08.006

Kumar, A., Shankar, A., Shaik, A. S., Jain, G., & Malibari, A. (2025). Risking it all in the metaverse ecosystem: forecasting resistance towards the enterprise metaverse. Information Technology & People, 38(1), 198-218. https://doi.org/10.1108/ITP-04-2023-0374

https://doi.org/10.1108/ITP-04-2023-0374

Kwon, J., & Ahn, J. (2021). The effect of green CSR skepticism on positive attitude, reactance, and behavioral intention. Journal of Hospitality and Tourism Insights, 4(1), 59-76. https://doi.org/10.1108/JHTI-05-2020-0074

https://doi.org/10.1108/JHTI-05-2020-0074

Lacap, J. P. G., Cham, T. H., & Lim, X. J. (2021). The influence of corporate social responsibility on brand loyalty and the mediating effects of brand satisfaction and perceived quality. International Journal of Economics & Management, 15(1), 69-87.

Lee, L.-H., Braud, T., Zhou, P., Wang, L., Xu, D., Lin, Z., Kumar, A., Bermejo, C., & Hui, P. (2021). All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda. arXiv Preprint arXiv:2110.05352. https://arxiv.org/abs/2110.05352

Lee, M. S., & Chaney, D. (2023). The psychological and functional factors driving metaverse resistance. Internet Research, 34(1), 195-215. https://doi.org/10.1108/INTR-08-2022-0647

https://doi.org/10.1108/INTR-08-2022-0647

Li, H., & Li, B. (2024). The state of metaverse research: A bibliometric visual analysis based on CiteSpace. Journal of Big Data, 11(1), 14.

https://doi.org/10.1186/s40537-024-00877-x

Loh, X. M., Lee, V. H., Leong, L. Y., Aw, E. C. X., Cham, T. H., Tang, Y. C., & Hew, J. J. (2023). Understanding consumers' resistance to pay with cryptocurrency in the sharing economy: A hybrid SEM-fsQCA approach. Journal of Business Research, 159, 113726.

https://doi.org/10.1016/j.jbusres.2023.113726

Maduku, D. K., Mpinganjira, M., & Duh, H. (2016). Understanding mobile marketing adoption intention by South African SMEs: A multi-perspective framework. International Journal of Information Management, 36(5), 711-723. https://doi.org/10.1016/j.ijinfomgt.2016.04.018

https://doi.org/10.1016/j.ijinfomgt.2016.04.018

Mani, Z., & Chouk, I. (2018). Consumer resistance to innovation in services: Challenges and barriers in the Internet of Things era. Journal of Product Innovation Management, 35(5), 780-807. https://doi.org/10.1111/jpim.12463

https://doi.org/10.1111/jpim.12463

Maroufkhani, P., Wan Ismail, W. K., & Ghobakhloo, M. (2020). Big data analytics adoption model for small and medium enterprises. Journal of Science and Technology Policy Management, 11(4), 483-513. https://doi.org/10.1108/JSTPM-02-2020-0018 McKinsey & Company. (2022). Value creation in the metaverse. McKinsey. https://www.mckinsey.com/capabilities/growth-marketing-and-sales/our-insights/value-creation-in-the-metaverse

https://doi.org/10.1108/JSTPM-02-2020-0018

Merhi, M. I., & Harfouche, A. (2024). Enablers of artificial intelligence adoption and implementation in production systems. International journal of production research, 62(15), 5457-5471. https://doi.org/10.1080/00207543.2023.2167014

https://doi.org/10.1080/00207543.2023.2167014

Memon, M. A., Thurasamy, R., Cheah, J. H., Ting, H., Chuah, F., & Cham, T. H. (2023). Addressing common method bias, operationalization, sampling, and data collection issues in quantitative research: review and recommendations. Journal of Applied Structural Equation Modeling, 7(2), 1-14. https://doi.org/10.47263/JASEM.7(2)01

https://doi.org/10.47263/JASEM.7(2)01

Miao, Z., & Zhao, G. (2023). Configurational paths to the green transformation of Chinese manufacturing enterprises: A TOE framework based on the fsQCA and NCA approaches. Scientific Reports, 13(1), 19181. https://doi.org/10.1038/s41598-023-46454-9

https://doi.org/10.1038/s41598-023-46454-9

Mogaji, E., Wirtz, J., Belk, R. W., & Dwivedi, Y. K. (2023). Immersive time (ImT): Conceptualizing time spent in the metaverse. International Journal of Information Management, 72, 102659.

https://doi.org/10.1016/j.ijinfomgt.2023.102659

Phonthanukitithaworn, C., Sellitto, C., & Fong, M. W. L. (2016). An investigation of mobile payment (m-payment) services in Thailand. Asia-Pacific Journal of Business Administration, 8(1), 37-54. https://doi.org/10.1108/APJBA-10-2014-0119

https://doi.org/10.1108/APJBA-10-2014-0119

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903.

https://doi.org/10.1037/0021-9010.88.5.879

Ram, S., & Sheth, J. N. (1989). Consumer resistance to innovations: The marketing problem and its solutions. Journal of Consumer Marketing, 6(2), 5-14. https://doi.org/10.1108/EUM0000000002542

https://doi.org/10.1108/EUM0000000002542

Rjab, A. B., Mellouli, S., & Corbett, J. (2023). Barriers to artificial intelligence adoption in smart cities: A systematic literature review and research agenda. Government Information Quarterly, 40(3), 101814. https://doi.org/10.1016/j.giq.2023.101814

https://doi.org/10.1016/j.giq.2023.101814

Sharma, S., Singh, G., Islam, N., & Dhir, A. (2022). Why do SMEs adopt artificial intelligence-based chatbots? IEEE Transactions on Engineering Management, 71, 1773 - 1786. https://doi.org/ 10.1109/TEM.2022.3203469

https://doi.org/10.1109/TEM.2022.3203469

Singh, M., Singh, K., & Sethi, A. S. (2020). Analytical hierarchy process and TOPSIS for selecting best parameters of green manufacturing. Measuring Business Excellence, 24(3), 345-365. https://doi.org/10.1108/MBE-08-2019-0076

https://doi.org/10.1108/MBE-08-2019-0076

Statista. (2022). Potential Security Concerns According to Metaverse Enthusiasts in the United States as of August 2022. Statista. https://www.statista.com/statistics/1346474/us-metaverse-security-concerns-2022/

Stjepić, A.-M., Pejić Bach, M., & Bosilj Vukšić, V. (2021). Exploring risks in the adoption of business intelligence in SMEs using the TOE framework. Journal of Risk and Financial Management, 14(2), 58. https://doi.org/10.3390/jrfm14020058

https://doi.org/10.3390/jrfm14020058

Swani, K. (2021). To app or not to app: A business-to-business seller's decision. Industrial Marketing Management, 93, 389-400. https://doi.org/10.1016/j.indmarman.2020.05.033

https://doi.org/10.1016/j.indmarman.2020.05.033

Tan, J. X., Cham, T. H., Zawawi, D., & Aziz, Y. A. (2019). Antecedents of organizational citizenship behavior and the mediating effect of organization commitment in the hotel industry. Asian Journal of Business Research, 9(2), 121-139.

https://doi.org/10.14707/ajbr.190064

Tornatzky, L. G., & Fleischer, M. (1990). The Processes of Technological Innovation (4th ed.). Lexington Books. Vishwakarma, P., Mukherjee, S., & Datta, B. (2020). Travelers' intention to adopt virtual reality: A consumer value perspective. Journal of Destination Marketing & Management, 17, 100456. https://doi.org/10.1016/j.jdmm.2020.100456

https://doi.org/10.1016/j.jdmm.2020.100456

Wael AL-Khatib, A. (2023). Drivers of generative artificial intelligence to fostering exploitative and exploratory innovation: A TOE framework. Technology in Society, 75, 102403. https://doi.org/10.1016/j.techsoc.2023.102403

https://doi.org/10.1016/j.techsoc.2023.102403

Wang, G., Badal, A., Jia, X., Maltz, J. S., Mueller, K., Myers, K. J., Niu, C., Vannier, M., Yan, P., & Yu, Z. (2022). Development of metaverse for intelligent healthcare. Nature Machine Intelligence, 4(11), 922-929.

https://doi.org/10.1038/s42256-022-00549-6

Wang, Y., & Zhao, J. (2022). Mobile edge computing, metaverse, 6G wireless communications, artificial intelligence, and blockchain: Survey and their convergence. 2022 IEEE 8th World Forum on Internet of Things (WF-IoT), 1-8.

https://doi.org/10.1109/WF-IoT54382.2022.10152245

Wu, R., & Yu, Z. (2024). Investigating users' acceptance of the metaverse with an extended technology acceptance model. International Journal of Human-Computer Interaction, 40(19), 5810-5826. https://doi.org/10.1080/10447318.2023.2241295

https://doi.org/10.1080/10447318.2023.2241295

Yin, W. (2023). Does digital transformation matter to green innovation: Based on TOE framework and configuration perspective. Environmental Science and Pollution Research, 30(44), 100046-100057. https://doi.org/10.1007/s11356-023-29438-0

https://doi.org/10.1007/s11356-023-29438-0

Zhong, Y., & Moon, H. C. (2023). Investigating the impact of Industry 4.0 technology through a TOE-based innovation model. Systems, 11(6), 277. https://doi.org/10.3390/systems11060277

https://doi.org/10.3390/systems11060277

Downloads

Published

2025-04-27

How to Cite

Wenjie Li, Tat-Huei Cham, Yanyan Zhang, Ika Yanuarti Loebiantoro, & Sanjar Mirzaliev. (2025). BREAKING THE VIRTUAL WALL: WHY BUSINESSES RESIST METAVERSE IN THE RETAIL INDUSTRY?. International Journal of Business and Society, 26(1), 344–365. https://doi.org/10.33736/ijbs.9567.2025