DETERMINANTS OF GENERATIVE ARTIFICIAL INTELLIGENCE ADOPTION IN INSURANCE COMPANIES

Authors

  • Xu Zaijuan School of Management, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia School of Management, Guangzhou College of Technology and Business,510800, Guangzhou, China
  • T. Ramayah School of Management, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia Department of Information Technology & Management, Daffodil International University, Birulia, Bangladesh Department of Management, Sunway Business School (SBS), 47500, Petaling Jaya, Selangor, Malaysia University Center for Research & Development (UCRD), Chandigarh University, Ludhiana, 140413, Punjab, India Faculty of Business, Sohar University, P.C 311, Sohar, Oman School of Business, The University of Jordan (UJ), Amman, 11942 Jordan Faculty of Economics and Business, Universitas Indonesia (UI), Depok City, 16424, Indonesia Asia Pacific University of Technology & Innovation (APU), 57000 Kuala Lumpur, Malaysia
  • Shi Yubo School of Management, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia School of Management, Guizhou University of Commerce, No. 1, 26th Avenue, Baiyun District, Guiyang City, Guizhou Province, China

DOI:

https://doi.org/10.33736/ijbs.9562.2025

Keywords:

Generative artificial intelligence, Insurance company, TOE framework

Abstract

This study aims to investigate the factors that influence the adoption of Generative artificial intelligence (GEN-AI) in insurance companies by utilizing the technology-organization-environment (TOE) framework.
This study employs the TOE framework to examine the factors that impact the GEN-AI adoption at organizational level and was conducted on 307 insurance company managers and analysed using partial least squares (PLS). The research offers insurance companies and policy maker insights and recommendations for GEN-AI adoption. The empirical results reveal that relative advantage (RA), perceived compatibility (PC) and top management support (TMS) significantly influence GEN-AI adoption, CP, OR have positive effect on TMS, but perceived compatibility (PC) cannot significantly influence GEN-AI adoption. TMS mediates between competitive pressure(CP) and GEN-AI in insurance firms, and it also mediates between organizational readiness (OR) and GEN-AI. This study provides countermeasure advice to AI technology developers, insurance company manager, and practitioners.

References

Aattouri I., Mouncif H., & Rida M. (2023). Modeling of an artificial intelligence based enterprise callbot with natural language processing and machine learning algorithms. International Journal of Artificial Intelligence, 12(2), 943. doi:10.11591/ijai.v12.i2.pp943-955

https://doi.org/10.11591/ijai.v12.i2.pp943-955

Agrawal K. (2024). Towards Adoption of Generative AI in Organizational Settings. Journal of Computer Information Systems, 64(5), 636-651. doi:10.1080/08874417.2023.2240744

https://doi.org/10.1080/08874417.2023.2240744

Al-khatib A. W. (2023). Drivers of generative artificial intelligence to fostering exploitative and exploratory innovation: A TOE framework. Technology in Society, 75(2), 12. doi:10.1016/j.techsoc.2023.102403

https://doi.org/10.1016/j.techsoc.2023.102403

Al Halbusi H., Klobas J. E., & Ramayah T. (2023). Green core competence and firm performance in a post-conflict country, Iraq. Business Strategy and the Environment, 32(6), 2702-2714. doi:10.1002/bse.3265

https://doi.org/10.1002/bse.3265

Ali S. S., Kaur R., Gupta H., Ahmad Z., & Elnaggar G. (2024). Determinants of an Organization's Readiness for Drone Technologies Adoption. Ieee Transactions on Engineering Management, 71, 43-57. doi:10.1109/tem.2021.3083138 Amin A., Bhuiyan M. R. I., Hossain R., Molla C., Poli T. A., & Milon M. N. U. (2024). The adoption of Industry 4.0 technologies by using the technology organizational environment framework: The mediating role to manufacturing performance in a developing country. Business Strategy and Development, 7(2), 363. doi:10.1002/bsd2.363

https://doi.org/10.1002/bsd2.363

Atta A. A. B. (2024). Adoption of fintech products through environmental regulations in Jordanian commercial banks. Journal of Financial Reporting and Accounting, 13(2), 14. doi:10.1108/jfra-09-2023-0507

https://doi.org/10.1108/JFRA-09-2023-0507

Badghish S., & Soomro Y. A. (2024). Artificial Intelligence Adoption by SMEs to Achieve Sustainable Business Performance: Application of Technology-Organization-Environment Framework. Sustainability, 16(5), 24. doi:10.3390/su16051864

https://doi.org/10.3390/su16051864

Bahoo S., Cucculelli M., & Qamar D. (2023). Artificial intelligence and corporate innovation: A review and research agenda. Technological Forecasting and Social Change, 188, 122264. doi:10.1016/j.techfore.2022.122264

https://doi.org/10.1016/j.techfore.2022.122264

Baig M. I., Yadegaridehkordi E., & Nizam Bin Md Nasir M. H. (2023). Influence of big data adoption on sustainable marketing and operation of SMEs: a hybrid approach of SEM-ANN. Management Decision, 61(7), 2231-2253. doi:10.1108/Md-06-2022-0778

https://doi.org/10.1108/MD-06-2022-0778

Baiod W., & Hussain M. M. (2024). The impact and adoption of emerging technologies on accounting: perceptions of Canadian companies. International Journal of Accounting and Information Management, 32(4), 557-592. doi:10.1108/ijaim-05-2023-0123

https://doi.org/10.1108/IJAIM-05-2023-0123

Bin-Nashwan S. A., Li J. Z., Jiang H. C., Bajary A. R., & Ma'aji M. M. (2025). Does AI adoption redefine financial reporting accuracy, auditing efficiency, and information asymmetry? An integrated model of TOE-TAM-RDT and big data governance. Computers in Human Behavior Reports, 17(3), 14. doi:10.1016/j.chbr.2024.100572

https://doi.org/10.1016/j.chbr.2024.100572

Brislin R. W. (1980). Cross-cultural research methods: Strategies, problems, applications. In Environment and culture (pp. 47-82): Springer.

https://doi.org/10.1007/978-1-4899-0451-5_3

Burger B., Kanbach D. K., Kraus S., Breier M., & Corvello V. (2023). On the use of AI-based tools like ChatGPT to support management research. European Journal of Innovation Management, 26(7), 233-241. doi:10.1108/EJIM-02-2023-0156

https://doi.org/10.1108/EJIM-02-2023-0156

Cain M. K., Zhang Z., & Yuan K.-H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior research methods, 49, 1716-1735. doi:10.3758/s13428-016-0814-1

https://doi.org/10.3758/s13428-016-0814-1

Chatterjee S., Rana N. P., Dwivedi Y. K., & Baabdullah A. M. (2021). Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170(12), 14. doi:10.1016/j.techfore.2021.120880

https://doi.org/10.1016/j.techfore.2021.120880

Chen D. Q., Preston D. S., & Swink M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32(4), 4-39. doi:10.1080/07421222.2015.1138364

https://doi.org/10.1080/07421222.2015.1138364

Chen H., Li L., & Chen Y. (2020). Explore success factors that impact artificial intelligence adoption on telecom industry in China. Journal of Management Analytics, 8(1), 36-68. doi:10.1080/23270012.2020.1852895

https://doi.org/10.1080/23270012.2020.1852895

Chen Y., Hu Y., Zhou S., & Yang S. (2022). Investigating the determinants of performance of artificial intelligence adoption in hospitality industry during COVID-19. International Journal of Contemporary Hospitality Management, 35(8), 2868-2889. doi:10.1108/ijchm-04-2022-0433Chin W. W., Marcolin B. L., & Newsted P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189-217. doi:10.1287/isre.14.2.189.16018

https://doi.org/10.1287/isre.14.2.189.16018

Dai J., Montabon F. L., & Cantor D. E. (2014). Linking rival and stakeholder pressure to green supply management: Mediating role of top management support. Transportation Research Part E-Logistics and Transportation Review, 71, 173-187. doi:10.1016/j.tre.2014.09.002

https://doi.org/10.1016/j.tre.2014.09.002

Das S. D., & Bala P. K. (2023). What drives MLOps adoption? An analysis using the TOE framework. Journal of Decision Systems, 33(3), 376-412. doi:10.1080/12460125.2023.2214306

https://doi.org/10.1080/12460125.2023.2214306

Deng S. C., Zhang J. J., Lin Z. N., & Li X. Q. (2024). Service staff makes me nervous: Exploring the impact of insecure attachment on AI service preference. Technological Forecasting and Social Change, 198(13), 89-93. doi:10.1016/j.techfore.2023.122946

https://doi.org/10.1016/j.techfore.2023.122946

Hair J. F., Hult G. T. M., Ringle C. M., Sarstedt M., Danks N. P., & Ray S. (2022). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook: Springer Nature.

https://doi.org/10.1007/978-3-030-80519-7

Harman H. H. (1976). Modern factor analysis: University of Chicago press.

Hashimy L., Jain G., & Grifell-Tatjé E. (2023). Determinants of blockchain adoption as decentralized business model by Spanish firms-an innovation theory perspective. Industrial Management Data Systems, 123(1), 204-228. doi:10.1108/IMDS-01-2022-0030

https://doi.org/10.1108/IMDS-01-2022-0030

Henseler J., Ringle C. M., & Sarstedt M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43(1), 115-135. doi:10.1007/s11747-014-0403-8

https://doi.org/10.1007/s11747-014-0403-8

Horani O. M., Al-Adwan A. S., Yaseen H., Hmoud H., Al-Rahmi W. M., & Alkhalifah A. (2023). The critical determinants impacting artificial intelligence adoption at the organizational level. Information Development, 12(6), 25. doi:10.1177/02666669231166889

https://doi.org/10.1177/02666669231166889

Iranmanesh., Lim K. H., Foroughi B., Hong M. C., & Ghobakhloo M. (2023). Determinants of intention to adopt big data and outsourcing among SMEs: organisational and technological factors as moderators. Management Decision, 61(1), 201-222. doi:10.1108/md-08-2021-1059

https://doi.org/10.1108/MD-08-2021-1059

Isiaku L., & Adalier A. (2024). Determinants of business intelligence systems adoption in Nigerian banks: The role of perceived usefulness and ease of use. Information Development, 21. doi:10.1177/02666669241307024

https://doi.org/10.1177/02666669241307024

Javaid., Haleem A., Singh R. P., & Suman R. (2022). Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study. Journal of Industrial Integration and Management-Innovation and Entrepreneurship, 7(1), 83-111. doi:10.1142/s2424862221300040

https://doi.org/10.1142/S2424862221300040

Kapadiya K., Patel U., Gupta R., Alshehri M. D., Tanwar S., Sharma G., & Bokoro P. N. (2022). Blockchain and AI-Empowered Healthcare Insurance Fraud Detection: an Analysis, Architecture, and Future Prospects. Ieee Access, 10, 79606-79627. doi:10.1109/access.2022.3194569

https://doi.org/10.1109/ACCESS.2022.3194569

Kock N., & Lynn G. S. (2012). Lateral Collinearity and Misleading Results in Variance-Based SEM: An Illustration and Recommendations. Journal of the Association for Information Systems, 13(7), 546-580. doi:10.17705/1jais.00302 Le L. T. N., Jeenanunta C., Ueki Y., Intalar N., & Komolavanij S. (2025). The Role of Managerial Competencies in Driving Industry 4.0 Adoption: A Comparative Study of Thailand and Vietnam's Manufacturing Sectors. Sustainability, 17(1), 28. doi:10.3390/su17010077

https://doi.org/10.3390/su17010077

Mariani M. M., Machado I., Magrelli V., & Dwivedi Y. K. (2023). Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation, 122, 102623. doi:10.1016/j.technovation.2022.102623

https://doi.org/10.1016/j.technovation.2022.102623

Maroufkhani P., Iranmanesh M., & Ghobakhloo M. (2023). Determinants of big data analytics adoption in small and medium-sized enterprises (SMEs). Industrial Management & Data Systems, 123(1), 278-301. doi:10.1108/imds-11-2021-0695

https://doi.org/10.1108/IMDS-11-2021-0695

Mezghani K., Alsadi A. K., & Alaskar T. H. (2022). Study of the environmental factors' effects on big data analytics adoption in supply chain management. International Journal of E-Business Research, 18(1), 1-20. doi:10.4018/IJEBR.309395

https://doi.org/10.4018/IJEBR.309395

Min S., & Kim B. (2024). Adopting Artificial Intelligence Technology for Network Operations in Digital Transformation. Administrative Sciences, 14(4), 70. doi:10.3390/admsci14040070

https://doi.org/10.3390/admsci14040070

Mondal S., Das S., & Vrana V. G. (2023). How to bell the cat? A theoretical review of generative artificial intelligence towards digital disruption in all walks of life. Technologies, 11(2), 44.

https://doi.org/10.3390/technologies11020044

Na S., Heo S., Han S., Shin Y., & Roh Y. (2022). Acceptance Model of Artificial Intelligence (AI)-Based Technologies in Construction Firms: Applying the Technology Acceptance Model (TAM) in Combination with the Technology-Organisation-Environment (TOE) Framework. Buildings, 12(2), 17. doi:10.3390/buildings12020090

https://doi.org/10.3390/buildings12020090

Naeem S., Azam M., Boulos M. N. K., & Bhatti R. (2024). Leveraging the TOE Framework: Examining the Potential of Mobile Health (mHealth) to Mitigate Health Inequalities. Information, 15(4), 176. doi:10.3390/info15040176

https://doi.org/10.3390/info15040176

Ngah A. H., Ramayah T., Ali M. H., & Khan M. I. (2020). Halal transportation adoption among pharmaceuticals and comestics manufacturers. Journal of Islamic Marketing, 11(6), 1619-1639. doi:10.1108/jima-10-2018-0193

https://doi.org/10.1108/JIMA-10-2018-0193

Nordin S. M., Zolkepli I. A., Rizal A. R. A., Tariq R., Mannan S., & Ramayah T. (2022). Paving the way to paddy food security: A multigroup analysis of agricultural education on Circular Economy Adoption. Journal of Cleaner Production, 375, 9. doi:10.1016/j.jclepro.2022.134089

https://doi.org/10.1016/j.jclepro.2022.134089

Owens E., Sheehan B., Mullins M., Cunneen M., Ressel J., & Castignani G. (2022). Explainable Artificial Intelligence (XAI) in Insurance. Risks, 10(12), 230. doi:10.3390/risks10120230

https://doi.org/10.3390/risks10120230

Pan Y., Froese F., Liu N., Hu Y. Y., & Ye M. L. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. International Journal of Human Resource Management, 33(6), 1125-1147. doi:10.1080/09585192.2021.1879206

https://doi.org/10.1080/09585192.2021.1879206

Pathak A., & Bansal V. (2025). Technology or Organization: What is More Important for Artificial Intelligence Adoption? Tehnicki Glasnik-Technical Journal, 19(1), 136-141. doi:10.31803/tg-20240512171214

https://doi.org/10.31803/tg-20240512171214

Phuoc N. V. (2022). The critical factors impacting artificial intelligence applications adoption in Vietnam: a structural equation modeling analysis. Economies, 10(6), 129. doi:10.3390/economies10060129

https://doi.org/10.3390/economies10060129

Pillai R., Sivathanu B., Mariani M., Rana N. P., Yang B., & Dwivedi Y. K. (2021). Adoption of AI-empowered industrial robots in auto component manufacturing companies. Production Planning & Control, 33(16), 1517-1533. doi:10.1080/09537287.2021.1882689

https://doi.org/10.1080/09537287.2021.1882689

Pizam A., Ozturk A. B., Balderas-Cejudo A., Buhalis D., Fuchs G., Hara T., . . . Chaulagain S. (2022). Factors affecting hotel managers' intentions to adopt robotic technologies: A global study. International Journal of Hospitality Management, 102(5), 15. doi:10.1016/j.ijhm.2022.103139

https://doi.org/10.1016/j.ijhm.2022.103139

Podsakoff P. M., Podsakoff N. P., Williams L. J., Huang C., & Yang J. (2024). Common method bias: It's bad, it's complex, it's widespread, and it's not easy to fix. Annual Review of Organizational Psychology Organizational Behavior, 11(1), 17-61. doi:10.1146/annurev-orgpsych-110721-040030

https://doi.org/10.1146/annurev-orgpsych-110721-040030

Preacher K. J., & Hayes A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891. doi:10.3758/BRM.40.3.879

https://doi.org/10.3758/BRM.40.3.879

Ramayah T., Cheah J., Chuah F., Ting H., & Memon M. A. (2018). Partial least squares structural equation modeling (PLS-SEM) using smartPLS 3.0. An updated guide practical guide to statistical analysis, 1(1), 1-72.

Rodrigues A. R. D., Ferreira F. A., Teixeira F. J., & Zopounidis C. (2022). Artificial intelligence, digital transformation and cybersecurity in the banking sector: A multi-stakeholder cognition-driven framework. Research in International Business Finance Research Letters, 60(8), 30-41. doi:10.1016/j.ribaf.2022.101616

https://doi.org/10.1016/j.ribaf.2022.101616

Seethamraju R., & Hecimovic A. (2023). Adoption of artificial intelligence in auditing: An exploratory study. Australian Journal of Management, 48(4), 780-800. doi:10.1177/03128962221108440

https://doi.org/10.1177/03128962221108440

Sharma C., Bharadwaj S. S., Gupta N., & Jain H. (2023). Robotic process automation adoption: contextual factors from service sectors in an emerging economy. Journal of Enterprise Information Management, 36(1), 252-274. doi:10.1108/jeim-06-2021-0276

https://doi.org/10.1108/JEIM-06-2021-0276

Shavneet S., & Gurmeet S. (2024). Why Do SMEs Adopt Artificial Intelligence-Based Chatbots? Ieee Transactions on Engineering Management, 71, 1773-1786. doi:10.1109/tem.2022.3203469

https://doi.org/10.1109/TEM.2022.3203469

Shmueli, Sarstedt M., Hair J. F., Cheah J. H., Ting H., Vaithilingam S., & Ringle C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347. doi:10.1108/ejm-02-2019-0189

https://doi.org/10.1108/EJM-02-2019-0189

Smit D., Eybers S., & Smith J. (2021, Dec 06-10). A Data Analytics Organisation's Perspective on Trust and AI Adoption. Paper presented at the 2nd Southern African Conference forArtificial Intelligence Research (SACAIR), Ctr AI Res, ELECTR NETWORK.

Somya G., Wafa G., Dharen K. P., & Sah G. P. (2022). Artificial intelligence adoption in the insurance industry: Evidence using the technology-organization-environment framework. Research in International Business and Finance, 63(8), 15. doi:10.1016/j.ribaf.2022.101757

https://doi.org/10.1016/j.ribaf.2022.101757

Sun S., Hall D. J., & Cegielski C. G. (2020). Organizational intention to adopt big data in the B2B context: An integrated view. Industrial Marketing Management, 86, 109-121. doi:10.1016/j.indmarman.2019.09.003

https://doi.org/10.1016/j.indmarman.2019.09.003

Teo H. H., Wei K. K., & Benbasat I. (2003). Predicting intention to adopt interorganizational linkages: An institutional perspective. Mis Quarterly, 27(1), 19-49. doi:10.2307/30036518 Thanabalan P., Vafaei-Zadeh A., Hanifah H., & Ramayah T. (2024). Big Data Analytics Adoption in Manufacturing Companies: The Contingent Role of Data-Driven Culture. Information Systems Frontiers, 27. doi:10.1007/s10796-024-10491-0

https://doi.org/10.1007/s10796-024-10491-0

Thong J. Y. (1999). An integrated model of information systems adoption in small businesses. Journal of Management Information Systems, 15(4), 187-214.

https://doi.org/10.1080/07421222.1999.11518227

Van L., Truong H. T. H., Vo-Thanh T., Nguyen H. T. T., Dang-Van T., & Nguyen N. (2024). Determinants of blockchain technology adoption in small and medium hospitality and tourism enterprises. Journal of Hospitality Marketing & Management, 33(7), 867-897. doi:10.1080/19368623.2024.2335931

https://doi.org/10.1080/19368623.2024.2335931

Wiredu J., Yang Q., Sampene A. K., Gyamfi B. A., & Asongu S. A. (2024). The effect of green supply chain management practices on corporate environmental performance: Does supply chain competitive advantage matter? Business Strategy and the Environment, 33(3), 2578-2599. doi:10.1002/bse.3606

https://doi.org/10.1002/bse.3606

Wook J. J. (2020). Case Studies for Insurance Service Marketing Using Artificial Intelligence(AI) in the InsurTech Industry. [인슈어테크(InsurTech)산업에서의 인공지능(AI)을 활용한보험서비스 마케팅사례 연구]. Journal of Digital Convergence, 18(10), 175-180. doi:10.14400/jdc.2020.18.10.175

Yuangao C., Hu Y., Zhou S., & Yang S. (2023). Investigating the determinants of performance of artificial intelligence adoption in hospitality industry during COVID-19. International Journal of Contemporary Hospitality Management, 35(8), 2868-2889. doi:10.1108/IJCHM-04-2022-0433

https://doi.org/10.1108/IJCHM-04-2022-0433

Yubo S., Ramayah T., & Hongmei L. (2022). Research on the Impact of Intelligent Manufacturing Technology on Business Model Based on CNKI's Evidence. Global Business & Management Research, 14, 266-283.

Yubo S., Ramayah T., Hongmei L., Yifan Z., & Wenhui W. (2023). Analysing the current status, hotspots, and future trends of technology management: Using the WoS and scopus database. Heliyon, 9(9), 7-29. doi:10.1016/j.heliyon.2023.e19922

https://doi.org/10.1016/j.heliyon.2023.e19922

Zhou B. R., & Zheng L. (2023). Technology-pushed, market-pulled, or government-driven? The adoption of industry 4.0 technologies in a developing economy. Journal of Manufacturing Technology Management, 34(9), 115-138. doi:10.1108/jmtm-09-2022-0313

https://doi.org/10.1108/JMTM-09-2022-0313

Downloads

Published

2025-04-27

How to Cite

Xu Zaijuan, T. Ramayah, & Shi Yubo. (2025). DETERMINANTS OF GENERATIVE ARTIFICIAL INTELLIGENCE ADOPTION IN INSURANCE COMPANIES. International Journal of Business and Society, 26(1), 272–291. https://doi.org/10.33736/ijbs.9562.2025