INTEGRATED EFFICIENCY AND PRODUCTIVITY ANALYSIS OF CONTAINER TERMINALS: A COMPREHENSIVE FRAMEWORK USING DEA, SBM, MPI, AND PREDICTIVE MODELING

ASSESSING EFFICIENCY AND PRODUCTIVITY OF MALAYSIA'S CONTAINER TERMINALS

Authors

  • Siti Marsila Mhd Ruslan Universiti Malaysia Terengganu
  • Kasypi Mokhtar
  • Anuar Abu Bakar
  • Wan Nurdiyana Wan Mansor

DOI:

https://doi.org/10.33736/ijbs.8822.2025

Keywords:

efficiency, productivity, container terminal, Malaysia, optimization

Abstract

Container terminals are critical nodes in the global supply chain, connecting maritime and inland transport systems. This study evaluates the efficiency and productivity of nine Malaysian container terminals over a 15-year period (2003–2018) using an integrated framework of Data Envelopment Analysis (DEA), Slack-Based Model (SBM), Malmquist Productivity Index (MPI), and Machine Learning (ML) techniques. It benchmarks performance, diagnoses inefficiencies, tracks productivity trends, and predicts future efficiency. DEA and SBM reveal disparities, with high-performing terminals near the efficiency frontier and underperformers showing resource slack and throughput shortfalls. MPI highlights the role of innovation in driving long-term competitiveness, while predictive modeling using ML provides actionable insights for proactive planning. This study bridges traditional efficiency analysis with modern predictive tools, offering recommendations to optimize terminal operations and sustain competitiveness.

References

Wu, Y., Goh, M., & Liang, C. (2021). Integrating DEA and machine learning for container terminal performance analysis. Maritime Economics & Logistics, 23(1), 101-122. https://doi.org/10.1057/s41278-020-00164-5

https://doi.org/10.1057/s41278-020-00164-5

Yıldırım, M. S., Aydın, M. M., & Gökkuş, Ü. (2020). Simulation optimization of the berth allocation in a container terminal with flexible vessel priority management. Maritime Policy and Management, 47(6), 833-848. https://doi.org/10.1080/03088839.2020.1730994

https://doi.org/10.1080/03088839.2020.1730994

Yu, H., Sun, X., & Wang, Y. (2020). Port efficiency evaluation using DEA integrated with machine learning algorithms. Journal of Transport Geography, 85, 102721. https://doi.org/10.1016/j.jtrangeo.2020.102721

https://doi.org/10.1016/j.apal.2019.102721

Zaghdoud, R., Mesghouni, K., & Dutilleul, S. C. (2012). Optimization Problem of Assignment Containers to AIVs in a Container Terminal. In IFAC Proceedings Volumes (Vol. 45, Issue 24). IFAC. https://doi.org/10.3182/20120912-3-BG-2031.00057

https://doi.org/10.3182/20120912-3-BG-2031.00057

Zhang, H., Collart-Dutilleul, S., & Mesghouni, K. (2013). Parameters' optimization of resources in a container terminal. In IFAC Proceedings Volumes (IFAC-PapersOnline) (Vol. 13, Issue PART 1). IFAC. https://doi.org/10.3182/20130708-3-CN-2036.00065

https://doi.org/10.3182/20130708-3-CN-2036.00065

Zhang, N., Liu, J., & Zhou, Z. (2018). Efficiency analysis of container ports using machine learning methods. Ocean & Coastal Management, 163, 352-363. https://doi.org/10.1016/j.ocecoaman.2018.07.009

https://doi.org/10.1016/j.ocecoaman.2018.07.009

Zhang, J., Deng, S., Kim, Y., & Zheng, X. (2024). A Comparative Analysis of Performance Efficiency for the Container Terminals in China and Korea. Journal of Marine Science & Engineering, 12(9), 1568. https://doi.org/10.3390/jmse12091568

https://doi.org/10.3390/jmse12091568

Zhu, J. (2014). Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets. International Series in Operations Research & Management Science. Springer. https://doi.org/10.1007/978-3-319-06647-9

https://doi.org/10.1007/978-3-319-06647-9

Downloads

Published

2025-12-30

How to Cite

Mhd Ruslan, S. M., Mokhtar, K., Abu Bakar, A., & Wan Mansor, W. N. (2025). INTEGRATED EFFICIENCY AND PRODUCTIVITY ANALYSIS OF CONTAINER TERMINALS: A COMPREHENSIVE FRAMEWORK USING DEA, SBM, MPI, AND PREDICTIVE MODELING: ASSESSING EFFICIENCY AND PRODUCTIVITY OF MALAYSIA’S CONTAINER TERMINALS. International Journal of Business and Society, 26(3), 983–1004. https://doi.org/10.33736/ijbs.8822.2025