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ABSTRACT 

 
Container terminals are critical nodes in the global supply chain, connecting maritime and inland transport systems. This study 

evaluates the efficiency and productivity of eight Malaysian container terminals over a 15-year period (2003–2018) using an 

integrated framework of Data Envelopment Analysis (DEA), Slack-Based Model (SBM), Malmquist Productivity Index (MPI), 

and Machine Learning (ML) techniques. It benchmarks performance, diagnoses inefficiencies, tracks productivity trends, and 

predicts future efficiency. DEA and SBM reveal disparities, with high-performing terminals near the efficiency frontier and 

underperformers showing resource slack and throughput shortfalls. MPI highlights the role of innovation in driving long-term 

competitiveness, while predictive modeling using ML provides actionable insights for proactive planning. This study bridges 

traditional efficiency analysis with modern predictive tools, offering recommendations to optimize terminal operations and sustain 

competitiveness. 
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1.0 INTRODUCTION 

 

Container terminals serve as vital nodes in the global supply chain, facilitating the seamless transfer of goods between 

maritime and inland transport networks (Zaghdoud et al., 2012; Wilmsmeier et al., 2013). With over 80% of global 

trade conducted via maritime shipping, the performance of container terminals is critical to the cost-efficiency, 

timeliness, and reliability of international trade (UNCTAD, 2021). As globalization and e-commerce continue to fuel 

increasing shipping volumes (Lee & Cullinane, 2016), terminals face growing demands to accommodate larger vessels 

process higher throughput, and meet stringent operational deadlines (Li et al., 2017; Song et al., 2020). 

 

Historically, terminal performance improvements have been driven by infrastructure expansion and manual 

optimization (Rashidi & Tsang, 2013;Zhang et al., 2013). However, the complexity of modern terminal operations 
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necessitates more sophisticated analytical tools to evaluate and enhance performance (Castilla-Rodríguez et al., 2020; 

Sharma & Yu, 2010). Efficient resource utilization, such as optimal crane operations, berth allocation, and yard 

stacking, can significantly reduce turnaround times and operational costs (Elwany et al., 2013; Yıldırım et al., 2020). 

In contrast, inefficiencies lead to delays, congestion, and financial losses, threatening competitiveness in the global 

market (Notteboom & Rodrigue, 2005). 

 

Despite substantial investments in terminal infrastructure, significant disparities persist between high-performing and 

underperforming terminals (Raghuram et al., 2017). While some terminals set global benchmarks for efficiency, others 

struggle with underutilized resources, technological gaps, and outdated processes (Sharma & Yu, 2009; Sharma & Yu, 

2010). The challenge lies in accurately diagnosing inefficiencies, benchmarking performance, and adopting targeted 

solutions to address operational bottlenecks (Li et al., 2020; Witte et al., 2012). Traditional evaluation tools such as 

Data Envelopment Analysis (DEA) and Slack-Based Model (SBM) have been widely applied in port studies, offering 

critical insights into relative efficiency and resource wastage (Mokhtar et al., 2016; Tone & Tsutsui, 2014). 

 

DEA is a popular technique for measuring the relative efficiency of decision-making units (DMUs) by comparing their 

inputs (e.g., berth length, crane efficiency) and outputs (e.g., container throughput). It identifies top-performing 

terminals and highlights inefficiencies among others (Banker et al., 1984). However, while DEA provides an overall 

efficiency score, it does not quantify the specific input or output slack contributing to inefficiencies (Cooper et al., 

2006). SBM addresses this limitation by explicitly measuring input excesses and output shortfalls, offering a more 

granular perspective on resource utilization (Tone, 2001). By leveraging SBM, terminal operators can pinpoint areas 

for improvement, such as reducing idle resources or optimizing cargo handling (Tone & Tsutsui, 2009). 

 

Efficiency analysis often requires consideration of changes over time, which is where the Malmquist Productivity 

Index (MPI) proves valuable (Caves et al., 1982; Odeck & Schøyen, 2020). The MPI decomposes productivity changes 

into operational efficiency improvements and technological advancements, providing a dynamic perspective on 

terminal performance (Färe et al., 1994; Simar & Wilson, 1999). However, traditional DEA and MPI analyses are 

retrospective, focusing on historical performance and lacking predictive capabilities (Emrouznejad & Yang, 2018). 

 

With the increasing availability of operational data, Machine Learning (ML) has emerged as a promising approach for 

forecasting terminal performance (Li et al., 2019). Techniques such as the Random Forest Regressor can leverage 

historical data to uncover complex nonlinear relationships between inputs and outputs, providing actionable 

predictions for future efficiency trends (Friedman, 2001; Zhang et al., 2018). Predictive modeling complements 

traditional benchmarking methods, enabling terminal operators to proactively address inefficiencies and plan for future 

demands (Sharma et al., 2020). 

 

Table 1. Comparison Table for Analysis 
Tool Best For Focus Limitations 

DEA Benchmarking DMUs Cross-sectional 

efficiency 

No temporal or slack analysis 

SBM Identifying specific inefficiencies Input-output slacks Data-intensive 

Malmquist 

Index 

Analyzing productivity changes over time Temporal trends Requires panel data 

Machine 

Learning 

Predicting and modeling efficiency in complex 

scenarios 

Dynamic prediction Black-box; requires large 

datasets 

 

Table 1 outlines the strengths and limitations of four key tools namely the DEA, SBM, MPI, and ML used for 

evaluating and enhancing efficiency and productivity. Each tool serves distinct purposes, making them suitable for 

specific types of analysis. DEA is ideal for benchmarking DMUs by assessing their cross-sectional efficiency. 

However, it does not account for temporal changes or slack analysis, which limits its utility for more detailed 

performance evaluations (Cooper et al., 2006). SBM extends DEA by identifying specific inefficiencies, focusing on 

input-output slack such as excess resource utilization or output shortfalls. Despite its granular insights, SBM is data-

intensive, requiring high-quality input and output data for accurate results (Tone, 2001). 

 

The MPI excels in analyzing productivity changes over time by capturing temporal trends and distinguishing between 

operational efficiency and technological advancements (Färe et al., 1994). However, it requires panel data, which may 

not always be available or complete for all DMUs. Lastly, ML is a powerful tool for predicting and modeling efficiency 
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in complex scenarios (Chen et al., 2019). It is particularly useful for dynamic predictions and integrating external 

variables like trade volumes or weather conditions. 

 

In the context of terminal efficiency and productivity, a combined approach is recommended. DEA or SBM should be 

used for benchmarking performance and identifying inefficiencies, providing a foundational understanding of resource 

utilization and output shortfalls. The Malmquist Index can then be applied to track productivity changes over time, 

capturing the impact of technological advancements and operational improvements. If forecasting future trends or 

examining the effects of external factors like trade volumes is critical, ML can complement these methods by providing 

predictive insights. This integrated approach ensures a comprehensive analysis of terminal performance, addressing 

both current inefficiencies and future opportunities for improvement. This study, hence, integrates DEA, SBM, MPI, 

and predictive modeling into a unified framework to comprehensively evaluate and forecast the efficiency of container 

terminals.  

 

In Malaysia, container terminals serve as crucial enablers of international trade and national logistics development, 

particularly given the country’s strategic location along the Strait of Malacca, one of the world’s busiest shipping 

lanes. Despite substantial investments through port privatization and modernization such as Westports, Northport, Port 

of Tanjung Pelepas, wide performance disparities persist across terminals, ranging from technologically advanced 

hubs to underperforming mid-tier facilities. Past studies have often focused on global or regional analyses, overlooking 

the operational heterogeneity and institutional challenges unique to Malaysian ports, such as fluctuating trade volumes, 

public-private ownership structures, and varied adoption levels of automation and digitalization (Mokhtar et al., 2013; 

Mokhtar & Shah, 2013a; 2013b; Mokhtar et al., 2016). 

 

Following that, this study aims to fill in the gap by providing a systematic, data-driven evaluation of eight major 

Malaysian container terminals over a 15-year period, using an integrated framework of DEA, SBM, MPI, and machine 

learning. First, benchmark efficiency is assessed using Data Envelopment Analysis (DEA) to evaluate the relative 

performance of terminals, establish efficiency benchmarks, and identify underperforming terminals. The Slack-Based 

Measure (SBM) extends this analysis by quantifying input slack and output shortfalls, providing a detailed 

understanding of resource inefficiencies. Second, to track temporal productivity, the Malmquist Productivity Index 

(MPI) is applied to measure productivity changes over time. This approach decomposes improvements into operational 

efficiency gains and technological advancements, offering insights into whether productivity gains stem from better 

resource utilization or innovations in infrastructure and processes. Third, inefficiencies are analyzed by leveraging 

SBM to identify specific operational shortcomings, such as underutilized berth capacity or crane productivity 

shortfalls, and deliver actionable recommendations for improvement. Finally, to predict future trends, a Random Forest 

Regressor is employed to forecast DEA efficiency scores by incorporating historical data and external factors. This 

predictive modeling supports long-term operational planning and enables data-driven decision-making to anticipate 

and mitigate future inefficiencies. 

 

This paper is organized into the following sections: Section 2 delves into the Literature Review, providing a 

comprehensive foundation for the study. Section 3 outlines the Methodology employed in this research. Section 4 

presents the Results and Discussion, offering an in-depth analysis of the findings. Finally, Section 5 concludes the 

study by summarizing key insights and offering practical recommendations. 

 

 

2.0 REVIEW OF ANALYTICAL APPROACHES 

 

Efficiency and productivity in container terminals are crucial for global trade, driving significant academic interest. 

This review explores key methodologies namely DEA, SBM, MPI, and ML by highlighting their strengths, limitations, 

and the value of integrated frameworks to bridge existing gaps. 

 

2.1 Data Envelopment Analysis (DEA) 

 

DEA evaluates the relative efficiency of DMUs using inputs (e.g., berth length, crane productivity) and outputs (e.g., 

throughput) to establish an efficiency frontier (Charnes et al., 1978). It remains a widely utilized method for 

benchmarking the relative efficiency of DMUs in container terminals. Recent advancements have enhanced DEA’s 

capabilities, particularly in dynamic and real-time scenarios (Ray, 2004). For example, hybrid models combining DEA 
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with predictive analytics have been developed to classify and predict DMU efficiency based on historical performance 

data (Chen et al., 2019; Cullinane et al., 2006). Additionally, the incorporation of real-time data streams into DEA 

frameworks has enabled more responsive benchmarking, allowing for immediate adjustments to operational strategies. 

Studies such as Wu et al. (2021) highlight the potential of integrating DEA with dynamic analytics to anticipate 

efficiency trends and improve resource allocation. Nonetheless, while widely applied (Cullinane et al., 2005; Barros, 

2003), DEA is limited by its assumption of proportional input-output changes and inability to diagnose specific 

inefficiencies, necessitating complementary methods like SBM (Jahanshahloo et al., 2005; Zhu, 2014). 

 

 

2.2 Slack-Based Model (SBM) 

 

SBM extends DEA by measuring slack in inputs and outputs, pinpointing inefficiencies such as underutilized yard 

space (Tone, 2001). Recent advancements have focused on addressing dynamic inefficiencies in real time. For 

instance, advanced models have been used to identify patterns in resource utilization, enabling the proactive reduction 

of input slacks (Zhang et al., 2024). Furthermore, the application of dynamic modeling to SBM has enhanced its 

capability to recommend real-time adjustments in terminal operations, such as berth and crane scheduling. Castilla-

Rodríguez et al. (2020), on the other hand, demonstrated how combining SBM with IoT-enabled real-time data can 

optimize terminal operations by minimizing excess resource utilization and maximizing throughput efficiency, while 

studies by Song and Cullinane (2007); and Wu and Goh (2010) reveal SBM’s diagnostic value in operational contexts 

but acknowledge its data-intensive nature and sensitivity to outliers (Cook et al., 2014). 

 

 

2.3 Malmquist Productivity Index (MPI) 

 

MPI analyzes productivity changes by decomposing trends into Efficiency Change (EC) and Technological Change 

(TC) (Caves et al., 1982; Färe et al., 1994). While valuable for tracking temporal dynamics, its reliance on panel data 

and inability to incorporate external factors, such as economic shifts, limit broader applicability (Balk, 2001; Coelli et 

al., 2005). Recent advancements have expanded MPI’s utility by incorporating predictive capabilities and dynamic 

analyses. For instance, advanced techniques have been applied to model temporal changes in productivity, enabling 

forecasts of EC and TC trends (Fan & Guo, 2018; Grifell-Tatjé & Lovell, 1995). Additionally, the integration of MPI 

with digital twin technologies and advanced analytics has enabled terminals to simulate various scenarios, identifying 

potential bottlenecks and the impact of technological innovations on productivity. Studies like Heilig and Voß (2017) 

emphasize the importance of combining MPI with real-time data analytics to dynamically adjust operational strategies 

and sustain competitiveness in rapidly evolving maritime environments. 

 

 

2.4 Machine Learning (ML)  

 

Apart from previous analytical approaches, recent advancements in Machine Learning (ML) have significantly 

transformed port and terminal management, particularly in addressing dynamic and real-time scenarios. ML 

techniques have become instrumental in enhancing operational efficiency, predicting port throughput, optimizing 

resource allocation, and enabling proactive decision-making. 

 

2.4.1 Predictive Modeling and Throughput Forecasting 

 

Predictive modeling has been a prominent application of ML in port management, especially for forecasting container 

throughput (Cheon, 2010). Techniques such as Random Forest, Gradient Boosting, and Neural Networks have 

demonstrated their ability to accurately predict throughput by analyzing historical data and external variables, 

including trade volumes, weather conditions, and economic indicators (Li et al., 2019; Wang et al., 2020). For instance, 

Yu et al. (2020) integrated ML algorithms with traditional econometric models to enhance the accuracy of throughput 

predictions, providing real-time insights that enable terminal operators to anticipate demand fluctuations and adjust 

operations accordingly. 
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2.5 Integrated Frameworks 

 

Integrating DEA, SBM, MPI, and ML combines their strengths: DEA and SBM benchmark performance, MPI tracks 

temporal trends, and ML forecasts future efficiency. This approach enables multidimensional analysis, actionable 

insights, and proactive planning (Chen et al., 2019; Wu et al., 2021). By addressing individual limitations, such as 

DEA’s static focus or ML’s interpretability challenges, integrated frameworks provide a robust toolkit for diagnosing 

inefficiencies, optimizing resources, and preparing for dynamic operational demands. This study contributes to the 

field by integrating DEA, SBM, MPI, and machine learning into a framework that provides a multidimensional 

analysis of efficiency and productivity. The inclusion of predictive modeling enhances forward-looking capabilities, 

enabling data-driven decision-making and resource optimization. By offering tailored insights for Malaysian ports, 

the study addresses geographical gaps and provides actionable recommendations to improve competitiveness and 

sustainability in maritime logistics.  

 

3.0 METHODOLOGY 

 

This study adopts an integrated methodology to evaluate and forecast the efficiency of container terminals using DEA, 

SBM, MPI, and ML. The following sections describe the data collection, the mathematical formulation of each 

analytical method, and the integration of these tools. 

 

3.1 Data Collection and Preparation 

 

The dataset used in this study comprises operational and performance metrics from 8 container terminals over a 15-

year period (2003 to 2018). Operational data were retrieved directly from the terminals involved in the study. The 

selected timeframe coincides with significant operational transformations in the maritime industry: 

- 2003–2008: Characterized by growth in trade volumes, increased competition among ports, and the early 

adoption of digital solutions in terminal operations (Notteboom & Rodrigue, 2005; Davis, 2007; 

UNCTAD, 2007). 

- 2008–2012: Reflects the industry’s response to the global financial crisis, including cost-cutting 

measures, consolidation among shipping lines, and slower investment in infrastructure (Wilmsmeier et 

al., 2013). 

- 2013–2018: Represents a recovery period marked by renewed investments in automation, digitalization, 

and sustainability initiatives, as well as the growing impact of e-commerce on global trade flows (Heilig 

& Voß, 2017). 

 

This segmentation allows for the analysis of how terminals adapted to distinct phases of industry transformation. 

 

The following Tables (Table 2 and 3) summarize the list of DMUs (container terminals of ports in Malaysia), inputs, 

as well as outputs. To ensure comparability, all input (𝑥𝑖) and output variables (𝑦𝑟) were normalized using Min-Max 

scaling.  

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
        (1) 

 

where 𝑥 is the original value, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum values of the variable, respectively. The 

resulting normalized data enabled unbiased efficiency comparisons across terminals. Additionally, missing or 

inconsistent data were addressed through interpolation and cross-referencing with industry reports to ensure a robust 

and reliable dataset. 
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Table 2. List of DMUs 
List of DMUs i. AW 

ii. BN 

iii. CP 

iv. DJ 

v. EPP 

vi. FK 

vii. GB 

viii. IS 

 

In general, there are seven main federal ports in Peninsular Malaysia administered by the Federal Government through 

their respective port authorities under the Ministry of Transport. These include Penang Port, Port Klang, Johor Port, 

Kuantan Port, Kemaman Port, the Port of Tanjung Pelepas, and Bintulu Port. As shown in Table 2, the analysis includes 

eight container terminals, comprising seven federal ports and one state-administered port. However, for confidentiality 

reasons, the specific port abbreviations used in the analysis cannot be disclosed. 

 

Table 3. List of Inputs and Outputs 
List of Inputs a) Total terminal area in m2  

b) Maximum draft in meter   

c) Berth length in meter   

d) Quay crane Index  

e) Yard stacking index  

f) Number of gate lanes   

g) Ground slots (TGS)   

h) Average QC moves per hour  

i) Average stacking height of yard equipment 

j) Average dwell time in yard 

List of Outputs  Terminal throughput 

 

3.2 Benchmarking with DEA and SBM 

DEA was used to establish an efficiency frontier by comparing the input-output combinations across DMUs of each 

terminal (𝑘) (Charnes et al., 1978). The DEA model employed a variable return to scale (VRS) assumption to reflect 

the operational realities of terminals of different sizes and capacities (Banker et al., 1984). Efficiency scores were 

calculated for each terminal, with scores closer to 1 indicating high relative efficiency and lower scores reflecting 

inefficiency. 

max
𝜃,𝜆

𝜃 subject to; 

  
∑ 𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑘

𝑛
𝑗=1 ,    𝑖 = 1,2, … . . 𝑚  (2) 

∑ 𝜆𝑗𝑦𝑟𝑗 ≤ 𝑦𝑟𝑘
𝑛
𝑗=1 ,    𝑟 = 1,2, … . . 𝑚  (3) 

∑ 𝜆𝑗 = 1𝑛
𝑗=1 ,     𝜆𝑗 ≥ 0   (4) 

where 𝜆𝑗 are weights assigned to DMUs, 𝜃 represents the efficiency score, and 𝑥𝑖𝑗  and 𝑦𝑟𝑗  are the inputs and outputs, 

respectively. 

 

Building on the DEA results, the SBM was applied to diagnose inefficiencies more granularly. SBM explicitly 

measured input slack (e.g., underutilized berth space) and output shortfalls (e.g., low throughput), providing actionable 

insights for resource optimization (Cullinane et al., 2005; Lozano & Villa, 2004). The integration of DEA and SBM 

allowed for the identification of efficient terminals and the pinpointing of specific operational inefficiencies in 

underperforming terminals (Cooper et al., 2011; Lin & Tseng, 2007). 
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3.2.1 Slack-Based Model (SBM) 

 

SBM extends DEA by explicitly incorporating slack in inputs and outputs. The SBM efficiency score (𝜌) is given by: 

𝜌 =
1−

1

𝑚
∑ 𝑠𝑖

−/𝑥𝑖𝑘
𝑚
𝑖=1

1+
1

𝑠
∑ 𝑠𝑟

+/𝑦𝑟𝑘
𝑠
𝑟=1

       (5) 

where: 

- 𝑠𝑖
− is the slack in input 𝑖, 

- 𝑠𝑟
+ is the slack in output 𝑟, 

- 𝑚 and 𝑠 are the total number of inputs and outputs, respectively. 

 

This formulation highlights inefficiencies by measuring input excess and output shortfalls, providing granular insights 

into operational bottlenecks.  

 

3.3 Temporal Analysis with MPI 

 

To track changes in terminal productivity over time, the MPI was employed. MPI decomposes productivity into two 

components (Balk, 2001; Kumar & Gulati, 2008): 

i. Efficiency Change (EC): Reflecting improvements in operational performance. 

ii. Technological Change (TC): Capturing the effects of innovations and infrastructure upgrades. 

 

MPI is calculated as: 

𝑀𝑃𝐼 = √
𝐷𝑡

𝑡(𝑥𝑡+1,𝑦𝑡+1)𝐷𝑡+1
𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑡(𝑥𝑡,𝑦𝑡)𝐷𝑡+1

𝑡+1(𝑥𝑡,𝑦𝑡)
     (6) 

where: 

- 𝐷𝑡
𝑡(𝑥𝑡,𝑦𝑡) is the efficiency of the DMU at time 𝑡 using technology available at 𝑡, 

- 𝐷𝑡+1
𝑡+1(𝑥𝑡+1,𝑦𝑡+1) represents efficiency at time 𝑡 + 1 using the technology available at 𝑡 + 1. 

 

The index is decomposed as: 
𝑀𝑃𝐼 = 𝐸𝐶 × 𝑇𝐶       (7) 

 

where: 

𝐸𝐶 =
𝐷𝑡

𝑡(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑡(𝑥𝑡,𝑦𝑡)

,  𝑇𝐶 = √
𝐷𝑡+1

𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡
𝑡(𝑥𝑡+1,𝑦𝑡+1)

    (8) 

 

MPI scores were calculated for each terminal and year, highlighting trends in productivity and identifying periods of 

significant operational or technological advancements (Wu & Ma, 2015). By combining MPI with SBM results, this 

study explored whether improvements in productivity were driven by better resource utilization or the adoption of 

new technologies.  

 

The analysis for DEA, SBM and MPI are conducted using MaxDEA software. Its flexibility in modeling multiple 

decision-making units (DMUs) and decomposing productivity changes into efficiency and technological components 

makes it suitable for longitudinal performance assessment of container terminals. 

 

3.4 Forecasting with Machine Learning 

 

To complement the retrospective analyses provided by DEA, SBM, and MPI, this study employed ML to predict future 

terminal efficiency. A Random Forest Regressor was selected due to its robustness and ability to handle nonlinear 

relationships between inputs and outputs (Breiman, 2001). The Random Forest model was chosen for this study due 

to its reliability, simplicity, and ability to handle structured data commonly used in terminal operations. Compared to 

models like XGBoost or Gradient Boosting, Random Forest offers a built-in feature for identifying key operational 

drivers of terminal efficiency and is less dependent on complex hyperparameter tuning, making it easier to implement 

without the risk of over-optimization. Even though XGBoost and Gradient Boosting are effective for complex 

relationships, they are more prone to overfitting on small or imbalanced datasets, making them less suitable for 

generalizable insights across diverse terminals.  
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Due to this, Random Forest’s method of averaging predictions from multiple decision trees reduces overfitting risks 

and ensures stable performance, even with noisy data. The model in this study is trained on historical DEA efficiency 

scores, using operational inputs and external factors (for example, trade volumes, weather conditions) as features 

(Peng et al., 2018). The training process minimizes the mean squared error (MSE): 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1       (9) 

where: 

- 𝑦𝑖  are the actual DEA scores 

- 𝑦̂𝑖 are the predicted scores 

- 𝑛 is the number of observations 

 

The model’s predictive performance was then validated using metrics such as R² and Mean Absolute Error (MAE) on 

a separate test set. The integration of ML into the methodology enabled the forecasting of DEA efficiency scores for 

each terminal, providing actionable insights for long-term operational planning (Wu & Zhuang (2019). Furthermore, 

feature importance analysis from the Random Forest model identified the key variables influencing terminal 

efficiency, offering additional guidance for resource allocation and infrastructure development. The ML analyses were 

conducted using MATLAB for model training, validation, and interpretability. 

 

3.5 Integration of Methodology 

 

The combined application of DEA, SBM, MPI, and ML provided a comprehensive framework for evaluating and 

improving terminal performance. DEA and SBM established benchmarks and diagnosed inefficiencies, MPI tracked 

productivity trends over time, and ML forecasted future efficiency levels. This integrated approach ensured that the 

study addressed both current inefficiencies and future planning needs. 

 

By leveraging the strengths of these tools, the methodology not only identified underperforming terminals but also 

offered tailored recommendations for improvement. For example, terminals with high input slack identified by SBM 

were further analyzed using MPI to determine whether their inefficiencies were improving or persisting over time. 

ML predictions for these terminals then guided proactive planning efforts, such as infrastructure investments or 

process optimizations. 

 

 

4.0 RESULTS AND DISCUSSION 

 

The analysis of container terminals using DEA, SBM, MPI, and predictive modeling reveals significant disparities in 

performance, offering a comprehensive understanding of operational strengths and inefficiencies. By evaluating 

current efficiency, diagnosing inefficiencies, assessing temporal productivity trends, and forecasting future 

performance, this study highlights critical opportunities and challenges for optimizing terminal operations. 

 

4.1 Efficiency Benchmarking with DEA  

 

The DEA demonstrates that certain terminals, such as AW, CP, EPP and BN, consistently operate near the efficiency 

frontier, reflecting their ability to allocate resources effectively and maintain high throughput (Table 4). These 

terminals exhibit efficiency scores exceeding 0.90 across most years, underscoring their operational stability. In 

contrast, terminals such as IS and DJ persistently show DEA lower scores, indicating systemic inefficiencies and 

misalignment between resource capacity and throughput demands. These findings emphasize the critical need for 

targeted interventions in underperforming terminals. For example, IS’s inefficiencies may stem from limited 

infrastructure investments or outdated operational processes, echoing challenges faced by mid-tier ports such as 

Mombasa, where inefficiencies arise from inadequate equipment and congested yard spaces (Hope & Willis, 2004; 

Notteboom & Rodrigue, 2009). The disparities in DEA scores also highlight the competitive edge of high-performing 

terminals, which leverage advanced technologies to sustain their efficiency. 
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Table 4. The DEA, SBM and ML Results 
Container 

Terminal DEA Efficiency SBM Efficiency 

Predicted DEA 

Efficiency (ML) 

AW03 1 -3.86744 0.999297 

BN03 0.919496 0.890855 0.920644 

CP03 1 0.90585 1 

DJ03 0.897684 0.954399 0.897737 

EPP03 1 1 1 

FK03 0.907959 -2.22134 0.908741 

GB03 1 1 1 

IS03 0 0 0 

AW04 0.755525 0.865509 0.757408 

BN04 0.942904 0.97128 0.943406 

CP04 1 -0.84522 0.992763 

DJ04 0.96374 0.991957 0.961126 

EPP04 1 0.999996 1 

FK04 1 0.999977 0.999956 

GB04 0.986301 -4.54 0.986507 

IS04 0 0 0 

AW05 0.883083 0.999256 0.884663 

BN05 1 0.954448 1 

CP05 1 0.900638 1 

DJ05 1 0.999894 0.996249 

EPP05 1 1 1 

FK05 1 0.980425 1 

GB05 0.510051 -3.877 0.511182 

IS05 0 0 0 

AW06 0.91711 0.925836 0.917703 

BN06 0.993279 0.910653 0.993525 

CP06 1 0.915337 0.998492 

DJ06 1 0.999997 0.9991 

EPP06 0.991863 0.954123 0.992767 

FK06 1 0.999983 0.999904 

GB06 0.688238 -4.15 0.688236 

IS06 0 0 0 

AW07 1 0.285725 0.993559 

BN07 1 0.922018 0.999673 

CP07 1 0.968495 0.999449 

DJ07 1 0.999994 0.996785 

EPP07 1 0.898478 0.998904 

FK07 1 0.999905 1 

GB07 0.867776 -3.18 0.866632 

IS07 0.68072 0.98845 0.682252 

AW08 1 0.996331 0.984496 

BN08 0.938736 0.759451 0.938358 
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CP08 1 0.904575 0.997531 

DJ08 1 1 0.998152 

EPP08 0.805093 0.909493 0.80656 

FK08 0.995776 0.963796 0.996828 

GB08 1 1 0.99935 

IS08 0.821688 -12.824 0.822303 

AW09 0.800066 0.947207 0.798761 

BN09 0.879994 0.947603 0.882139 

CP09 1 0.886427 0.999437 

DJ09 0.903815 0.039138 0.904923 

EPP09 0.809565 0.985731 0.809961 

FK09 0.930828 0.9837 0.931623 

GB09 1 -0.09155 0.999928 

IS09 1 0.999998 1 

AW10 1 0.999999 0.978692 

BN10 1 -0.08426 0.997659 

CP10 1 0.920208 0.999166 

DJ10 0.937419 0.97704 0.937495 

EPP10 0.901375 0.92411 0.900537 

FK10 1 1 1 

GB10 0.866039 -0.08687 0.866071 

IS10 0.917548 0.999996 0.918053 

AW11 0.865747 0.135491 0.877556 

BN11 0.961462 0.951042 0.959964 

CP11 0.887068 -6.864 0.891287 

DJ11 0.997067 0.912562 0.996067 

EPP11 0.836513 0.975523 0.836924 

FK11 0.975717 0.669547 0.975654 

GB11 1 1 1 

IS11 1 0.999999 1 

AW12 0.949902 0.903663 0.953233 

BN12 0.929041 0.358736 0.929575 

CP12 0.910312 -1.15877 0.911824 

DJ12 0.961906 0.930668 0.961683 

EPP12 0.811159 0.93977 0.812571 

FK12 1 0.999756 0.999814 

GB12 0.706445 0.369003 0.706969 

IS12 1 0.997414 0.999856 

AW13 0.943037 0.909751 0.946506 

BN13 0.824309 0.843561 0.824361 

CP13 0.900923 -0.091811 0.903529 

DJ13 0.909029 0.93952 0.909974 

EPP13 0.861245 0.896154 0.86068 

FK13 0.929809 0.982918 0.929977 
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GB13 0.730802 0.942222 0.731457 

IS13 1 0.993779 0.999817 

AW14 0.983356 0.939843 0.979395 

BN14 0.736698 0.78752 0.742269 

CP14 1 0.999998 0.991066 

DJ14 0.95163 0.908778 0.951634 

EPP14 0.880728 0.988796 0.879394 

FK14 0.964313 0.417616 0.964307 

GB14 0.789321 0.956192 0.792191 

IS14 1 1 0.998992 

AW15 1 0.973908 0.988226 

BN15 0.8109 0.804678 0.811796 

CP15 1 0.977157 1.000537 

DJ15 0.850184 0.753888 0.851358 

EPP15 0.916661 0.967027 0.917304 

FK15 0.958637 0.999998 0.958706 

GB15 0.744738 0.759247 0.746566 

IS15 0.910695 0.982338 0.910599 

AW16 1 0.999999 0.985019 

BN16 0.841959 0.841382 0.840899 

CP16 0.937769 0.964921 0.938982 

DJ16 0.878316 0.950513 0.878793 

EPP16 1 0.8855 0.997298 

FK16 0.963262 -0.93423 0.963306 

GB16 0.794777 0.967652 0.794553 

IS16 0.896153 0.979825 0.894801 

AW17 0.907491 0.919118 0.910119 

BN17 0.858614 0.842359 0.859413 

CP17 0.921865 0.963386 0.922411 

DJ17 0.956566 -6.17042 0.955106 

EPP17 1 0.999983 0.999265 

FK17 1 0.999995 0.999845 

GB17 0.886665 0.982282 0.885732 

IS17 0.885544 0.953816 0.885059 

AW18 0.957667 0.934543 0.956594 

BN18 0.801373 0.960368 0.805772 

CP18 1 1 0.995354 

DJ18 1 -2.65545 0.997756 

EPP18 0.991172 0.995628 0.99123 

FK18 1 -3.15057 1 

GB18 1 1 0.998193 

IS18 0.938227 0.999998 0.943895 
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4.2 Diagnosing Inefficiencies through SBM  

 

The SBM further elucidates the granular aspects of inefficiency, identifying significant input slack and output 

shortfalls in underperforming terminals (Table 4).  Slack variables, which measure the excess inputs or output deficits 

for inefficient DMUs, are typically non-negative in standard formulations, reflecting the extent of inefficiency. 

However, in this study, certain adjustments to the model’s constraints result in slack variables exhibiting negative 

values. Terminals such as IS and DJ exhibit severe inefficiencies, with SBM scores reaching as low as -12. This reflects 

high levels of idle resources, such as unused berth capacity and crane underutilization. Conversely, terminals such as 

CP and AW show minimal slack, indicating optimized resource deployment and effective operational management. 

The SBM analysis reveals systemic misalignments in resource allocation in underperforming terminals, necessitating 

a strategic overhaul of processes. For instance, the Port of Rotterdam’s success in minimizing slack through automated 

yard operations and dynamic crane scheduling, underscore the importance of operational innovation in addressing 

inefficiencies (Van der Lugt et al., 2017). The critical implication of SBM findings is the need for data-driven 

interventions tailored to specific inefficiencies, ensuring resource utilization aligns with operational objectives.  

 

 
 

Figure 1. SBM Efficiencies Scores 

 

Figure 1 visualizes SBM Efficiency Scores for container terminals from 2003–2018, highlighting inefficiencies 

through input slack (e.g., unused resources) and output shortfalls (e.g., insufficient throughput). The heatmap ranges 

from red (efficient) to blue (inefficient), clearly distinguishing high-performing and underperforming terminals. 

 

High performers like AW, CP, and BN maintain stable red hues, reflecting strong operations, resource optimization, 

and advanced infrastructure. Conversely, DJ and IS consistently show dark blue shading, indicating inefficiencies such 

as outdated systems and poor resource allocation. Moderate performers, including GB, and EPP, exhibit lighter shades, 

signifying occasional inefficiencies from temporary disruptions or capacity constraints. Some terminals, like IS, show 

tremendous improvements over time, transitioning from severe inefficiency (-12) to less inefficiency (0.999) by the 
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end of the period. However, persistent challenges underline the need for systemic reforms, including automation, 

process reengineering, and infrastructure upgrades. 

 

The heatmap reveals performance clusters, enabling tailored strategies. High performers should sustain innovation 

and share best practices, while moderate performers could benefit from targeted optimizations like real-time analytics. 

Chronic underperformers require comprehensive reforms to close performance gaps and enhance competitiveness. 

This visualization underscores the importance of sustained investments, proactive monitoring, and data-driven 

strategies to improve efficiency and resilience in the maritime sector. 

 

4.3 MPI Analysis  

 

Moving on, the MPI provides insights into temporal productivity trends, decomposing performance into EC and TC 

(Table 5). Terminals such as CP and EPP demonstrate consistent MPI values exceeding 1.0, driven by operational 

improvements (EC > 1.0) and technological advancements (TC > 1.0). These trends reflect ongoing investments in 

infrastructure and innovation, enabling sustained productivity growth. The analysis of terminal performance highlights 

distinct patterns in efficiency and TC across facilities. High-performing terminals like CP and EPP consistently 

demonstrate above-average EC and TC, reflecting strong operational strategies and successful innovation. CP, with 

its high TC peak of 1.26, exemplifies the benefits of sustained investments in advanced systems, while EPP’s 

significant technological advancements underscore the potential of innovative solutions to drive growth. These 

terminals can serve as benchmarks, emphasizing the importance of consistent technology adoption and scalable 

solutions to maintain competitiveness. Conversely, mid-performers such as AW and BN exhibit stability with near-

average EC and TC values but need transformative strategies, such as automation and digital transformation, to push 

performance beyond current thresholds. 

 

Underperforming terminals like DJ and IS face significant challenges, with below-average EC and TC values 

reflecting inefficiencies and technological stagnation. IS, in particular, struggles with inconsistency and a lack of 

modern practices, requiring targeted investments in advanced technologies like automated crane systems and 

predictive analytics to enhance performance. Terminals with moderate performance, such as FK and GB, show 

potential for growth through addressing operational bottlenecks and leveraging technology to stabilize performance 

and reduce variability. 

 

The findings suggest that while operational efficiencies can temporarily sustain performance, long-term 

competitiveness requires consistent technological upgrades. The implications are particularly critical for terminals 

with declining TC trends, as they risk falling behind global standards without significant investments in automation 

and digital transformation. 

 

Table 5. Summary of EC and TC Breakdown 
Base 

Terminal 

Average 

EC 

EC 

Variability 

Minimum 

EC 

Maximum 

EC 

Average 

TC 

TC 

Variability 

Minimum 

TC 

Maximum 

TC 

AW 0.970609 0.272859 0.212376 1.249896 0.970609 0.272859 0.212376 1.249896 

BN 0.999127 0.072252 0.893716 1.152255 0.999127 0.072252 0.893716 1.152255 

CP 1.028939 0.118776 0.783026 1.263702 1.028939 0.118776 0.783026 1.263702 

DJ 0.92847 0.256332 0.092264 1.08909 0.92847 0.256332 0.092264 1.08909 

EPP 1.075829 0.258023 0.696537 1.923465 1.075829 0.258023 0.696537 1.923465 

FK 1.064278 0.226754 0.795091 1.832793 1.064278 0.226754 0.795091 1.832793 

GB 1.067877 0.137163 0.855825 1.349351 1.067877 0.137163 0.855825 1.349351 

IS   0.910689 inf   0.910689 inf 
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Figure 2. EC and TC Trends Across All Terminals 

 

Figure 2 offers a more granular view by breaking down EC and TC trends for individual terminals. This visualization 

highlights the variability in performance across terminals, reflecting disparities in their ability to manage resources 

and adopt new technologies. High-performing terminals like CP and EPP exhibit stable and consistently positive EC 

and TC trends, demonstrating their capacity for sustained operational improvements and effective integration of 

technological innovations. In contrast, terminals like DJ and IS show significant fluctuations and periodic declines in 

both EC and TC, reflecting their struggle to maintain consistent performance. For example, DJ experiences sharp dips 

in both metrics around year 10, suggesting external disruptions or inefficiencies in adapting to changing operational 

demands. 

 

The variability across terminals further emphasizes the need for tailored strategies to address unique challenges. 

Terminals like CP, which demonstrate consistent upward trends in both EC and TC, likely benefit from robust 

operational and technological strategies that ensure sustained productivity growth. On the other hand, 

underperforming terminals like DJ and IS require focused interventions, such as modernizing outdated infrastructure, 

adopting automation technologies, and improving workforce training to stabilize their performance. 

 

Key periods, such as the systemic decline in EC and TC around year 10, indicate potential global or regional 

disruptions that impacted multiple terminals. These disruptions could stem from global trade slowdowns, supply chain 

bottlenecks, or failures to maintain critical infrastructure. Such challenges highlight the importance of proactive 

planning and scenario forecasting to mitigate the impact of similar events in the future. The trends in TC also 

underscore the importance of consistent investment in innovation. While some terminals exhibit episodic 

technological advancements, the lack of sustained innovation in others reveals gaps in long-term planning. Terminals 

must adopt a continuous approach to modernization, leveraging automated systems, advanced analytics, and digital 

technologies to enhance productivity and maintain competitiveness. High-performing terminals can further 

consolidate their leadership by sharing best practices with underperforming counterparts, fostering a more cohesive 

and competitive industry landscape. 
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Figure 3. Decomposed Malmquist Trends 

 

Additionally, Figure 3 illustrates the decomposed MPI trends, focusing on the aggregate EC and TC values across all 

terminals. The EC line reflects the changes in operational efficiency over the years. Periodic peaks, such as those 

observed around year 6 and year 14, signify moments of improved operational efficiency, likely driven by effective 

resource management, process optimization, or external factors such as favorable market conditions. Conversely, the 

dips in EC, particularly around year 8, point to periods of inefficiency that may have been caused by operational 

disruptions, bottlenecks, or external challenges like trade volume fluctuations. 

 

The TC line, representing the impact of infrastructure and technological advancements, follows a similar trajectory to 

EC but displays slightly sharper fluctuations. This suggests that technological innovation tends to occur in episodic 

bursts rather than as a consistent trend. For instance, the spikes in TC around years 6 and 14 likely correspond to 

significant investments in new equipment, automation, or terminal operating systems. However, the dip around year 

10 reveals a stagnation in technological progress, which could be attributed to financial constraints, delays in 

implementing upgrades, or misaligned investment strategies. The close alignment between EC and TC trends 

underscores the interdependence of operational efficiency and technological advancement in driving productivity. 

 

In summary, these figures highlight the dynamic interplay between operational efficiency and technological innovation 

in shaping terminal productivity. The alignment between EC and TC trends underscores their mutual importance, 

while the variability across terminals emphasizes the need for customized strategies to address performance gaps. To 

sustain productivity growth, terminals must prioritize both operational excellence and continuous innovation, ensuring 

they remain resilient and competitive in a rapidly evolving global trade environment. 

 

4.4 Predictive Modeling of DEA Efficiency  

 

The ML offers a forward-looking perspective, highlighting potential areas of improvement and future performance 

trends. The Random Forest model predicted DEA efficiency scores with high accuracy, demonstrating its robustness 

in forecasting terminal performance (Table 4). For high-performing terminals such as AW and CP, predictive insights 

align closely with observed trends, reinforcing their operational stability. However, predictions for underperforming 

terminals such as IS and DJ remained consistently low, underscoring the entrenched nature of their inefficiencies. 

Feature importance analysis identified key predictors of efficiency, such as berth length and crane productivity, 

emphasizing the critical role of infrastructure and resource management in driving performance. The predictive model 

provides actionable insights, enabling terminal operators to prioritize investments and mitigate inefficiencies 

proactively. For instance, predictive modeling has been instrumental at the Port of Los Angeles, where similar tools 
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have optimized berth allocation and reduced vessel turnaround times, offering a roadmap for underperforming 

terminals (Lee et al., 2021; Lam & van de Voorde, 2019). 

 

 
Figure 4. Comparison between DEA, SBM, and Predicted DEA Efficiencies 

 

Figure 4 visualizes DEA Efficiency, SBM Efficiency, and Predicted DEA Efficiency scores over time, capturing the 

evolution of container terminal performance. The stability of DEA efficiency scores near zero indicates consistent 

underperformance relative to the efficiency frontier, reflecting a lack of significant operational improvements. This 

stagnation is likely due to outdated infrastructure, inefficient processes, or external challenges, as seen in mid-tier 

ports where resource constraints and bottlenecks limit performance (Raballand et al., 2012; Udo & Akpan, 2011). 

 

SBM efficiency scores reveal greater variability, with consistently negative values highlighting persistent 

inefficiencies, such as underutilized resources and low throughput. Early sharp declines suggest severe operational 

challenges, while partial recoveries reflect incremental improvements like better crane scheduling. However, deeply 

embedded inefficiencies persist, similar to the Port of Mombasa’s struggles with yard congestion and infrastructure 

gaps (Hope & Willis, 2004). The variability among terminals underscores the need for tailored interventions. 

 

The predicted DEA scores align closely with actual DEA trends, validating the model’s accuracy. Predictive insights 

suggest terminal efficiency will remain stagnant without significant operational changes. Key factors influencing 

efficiency, including crane productivity, berth length, and yard capacity, emphasize the importance of infrastructure 

upgrades and resource optimization (Brooks & Pallis, 2012). 

 

4.5 Critical Discussion and Implications 

 

The alignment between DEA, SBM, and MPI metrics underscores the interconnected nature of operational efficiency 

and productivity growth. Terminals such as CP and AW exemplify how optimized resource utilization and continuous 

technological investments can sustain high performance. These findings resonate with trends observed at globally 

recognized ports like Singapore and Shanghai, where automation and process optimization drive long-term efficiency 

(Lam & Yap, 2011; Rodrigue & Notteboom, 2020; Wang & Cullinane, 2015). Conversely, underperforming terminals 

like IS and DJ exhibited inefficiencies similar to those observed in mid-tier African ports, such as Mombasa, where 

resource constraints and infrastructure limitations impede performance (Hope & Willis, 2004). The persistence of low 
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DEA and SBM scores in these terminals reflects structural inefficiencies that require strategic interventions, such as 

targeted investments in automation, infrastructure modernization, and workforce training. 

 

MPI trends further emphasize the critical role of technological innovation in sustaining competitiveness. Terminals 

with positive TC trends are better positioned to adapt to evolving demands, while those with stagnant or declining TC 

scores risk obsolescence. These findings highlight the dual necessity of operational efficiency and technological 

advancement. Real-world examples, such as the Port of Qingdao’s successful implementation of automated guided 

vehicles, provide a blueprint for underperforming terminals to enhance their MPI metrics and remain competitive in 

a rapidly evolving industry (Heilig & Voß, 2017; UNCTAD, 2021). 

 

Predictive modeling reinforces the importance of proactive planning in mitigating inefficiencies. By forecasting future 

trends, terminal operators can allocate resources effectively, prioritize investments, and address potential bottlenecks 

before they impact operations (Nazri et al., 2024). This forward-looking approach is particularly critical for mid-

performing terminals, where strategic decisions can significantly influence future performance. The successful 

application of predictive tools in ports like Los Angeles underscores their potential to transform operational planning 

and resource allocation, offering valuable lessons for terminals across performance tiers (Becker et al., 2018; 

Notteboom & Rodrigue, 2017). 

 

 

5.0 CONCLUSION 

 

This study evaluated the efficiency and productivity of eight Malaysian container terminals over 15 years (2003–2018) 

using DEA, SBM, MPI, and ML methodologies. The findings offer robust empirical insights into both static and 

dynamic efficiency, slack utilization, and predictive modeling within the port sector. 

 

The DEA results demonstrate that certain terminals particularly AW, CP, EPP, and BN consistently operate near the 

efficiency frontier, reflecting effective resource allocation and strong throughput performance. These terminals 

frequently record efficiency scores exceeding 0.90 across most years, indicating operational stability and strategic 

resilience. In contrast, terminals such as IS and DJ consistently show lower DEA scores, highlighting persistent 

operational bottlenecks and suboptimal resource use. 

 

SBM analysis further reveals deeper inefficiencies, especially in IS and DJ, where efficiency scores dropped as low 

as -12. Such extreme slack values point to significant idle resources, including underutilized berth length and crane 

capacity. On the other hand, terminals like CP and AW exhibit minimal slack, confirming their optimized resource 

deployment and disciplined operational management. 

 

The MPI results underscore the dual influence of operational improvements and technological progress on terminal 

productivity. Terminals such as CP and EPP consistently report MPI scores exceeding 1.0, driven by both efficiency 

change and technical change. These outcomes reflect sustained investments in digitalization and physical 

infrastructure. In contrast, mid-performing terminals like AW and BN show stable yet unremarkable MPI scores, 

suggesting the need for transformative strategies such as automation, green technologies, and integrated IT systems 

to break through their current performance plateaus. 

 

In parallel, the integration of ML techniques specifically Random Forest regression enabled accurate prediction of 

DEA scores. Predictive insights closely mirrored observed trends for high-performing terminals such as AW and CP, 

affirming their operational consistency. However, predicted scores remained consistently low for underperformers 

such as IS and DJ, reinforcing the systemic nature of their inefficiencies. Feature importance analysis highlighted 

berth length and crane productivity as primary efficiency drivers, underscoring the critical role of infrastructure and 

asset utilization in shaping terminal performance. 

 

Collectively, this study demonstrates the value of a multi-method evaluation framework that combines frontier-based 

efficiency measurement, longitudinal productivity tracking, and data-driven forecasting. The insights generated can 

inform port authorities and terminal operators in prioritizing investments, optimizing operations, and designing 

policies that foster long-term performance improvements. Future research may explore the incorporation of qualitative 
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enablers such as governance quality, regulatory frameworks, ESG indicators, and region-wide benchmarking to extend 

the utility of this approach. 

 

5.1 Recommendations and Way Forward 

 

To improve terminal operations and align with broader sustainability goals, this study offers the following actionable 

recommendations for ports such as: 

 

a) Implement automation: Automating key processes such as crane operations, berth scheduling, and yard 

management can significantly enhance operational efficiency. Automation not only reduces human error but 

also accelerates cargo handling, thereby improving turnaround times. High-performing terminals globally, 

such as those in Rotterdam and Singapore, have demonstrated the transformative impact of automation on 

efficiency and competitiveness. 

 

b) Enhance crane productivity: Investing in modern cranes with higher handling capacities and integrating real-

time monitoring systems can optimize crane productivity. Predictive maintenance systems should be adopted 

to minimize downtime and ensure continuous operations, thereby reducing delays and associated costs. 

 

c) Integrate predictive tools into daily operations: Predictive analytics should be incorporated into operational 

decision-making processes to forecast demand, allocate resources efficiently, and mitigate potential 

bottlenecks. For example, leveraging predictive models to anticipate peak periods can help terminals 

preemptively adjust operations and reduce congestion. 

 

d) Focus on sustainability and emission reduction: Efficiency improvements should be aligned with 

environmental objectives to reduce emissions and support global sustainability goals. For instance, 

optimizing vessel turnaround times and reducing idle times at berths can lower fuel consumption and 

associated greenhouse gas emissions. Investments in green technologies, such as electrified cranes and 

alternative fuels, should be prioritized to enhance sustainability. 

 

e) Adopt industry best practices: Learning from global benchmarks, such as the digital twin technology used at 

the Port of Rotterdam or advanced congestion management at the Port of Los Angeles, can guide the 

development of innovative solutions tailored to local contexts. 

 

These recommendations not only address the operational inefficiencies identified in this study but also contribute to 

broader environmental and sustainability goals by promoting resource efficiency and reducing emissions. By adopting 

these strategies, Malaysian container terminals can enhance their competitiveness and resilience in a rapidly evolving 

global maritime industry. 
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