SMART GRID ENABLER (SGE) FRAMEWORK DEVELOPMENT FOR RESIDENTIAL SECTOR TOWARDS ENERGY CONSERVATION STRATEGIES VIA FUZZY DELPHI METHOD

Authors

  • Ahmad Haqqi Nazali Abdul Razak Department of Built Environment & Technology, College of Built Environment, Universiti Teknologi MARA, Perak, Malaysia
  • Nur Azfahani Ahmad Department of Built Environment & Technology, College of Built Environment, Universiti Teknologi MARA, Perak, Malaysia
  • Firdaus Muhammad Sukki School of Computing, Engineering & The Built Environment, Edinburgh Napier University, Edinburgh, United Kingdom
  • Radin Zulhazmi Radin Abdul Halim Ministry of Energy Transition and Water Transformation (PETRA), Putrajaya, Malaysia

Keywords:

smart grid enabler, residential sector, energy optimisation component, framework, fuzzy delphi method

Abstract

The global implementation of smart grids has revolutionised the electricity grid, including in Malaysia, where Tenaga Nasional Berhad leads the initiative. This Smart Grid system is akin to the internet of electricity, serving as a pivotal element in the sustainable energy transition within the electricity sector. The residential sector, which heavily relies on electricity for daily activities, stands to benefit significantly from this development. Despite the numerous advantages offered by smart grids, the Malaysian residential sector has not yet fully optimised these benefits to incorporate fit-for-use components. Thus, this research aims to develop a Smart Grid Enabler (SGE) framework for the Malaysian residential sector that supports energy conservation strategies. Based on the Trias Energetica and Smart Grid Conceptual Model, the Fuzzy Delphi Method is utilised to synthesise expert consensus and establish critical components for the SGE framework and achieve the aim of this research. Subsequent future research anticipates a better refined SGE framework which explores pragmatic and practical real-world applications in the residential setting. This study contributes to ongoing efforts in sustainable energy development through smart grid system optimisation for the Malaysian residential sector.

References

Mohandass and Nair, S., (2015). Smart Meter Pilot Project in Tenaga Nasional Berhad, Malaysia: 3 Different Communication Technology Tested.

Liu, Y., Yu, Y., Gao, N. and Wu, F. (2020). A Grid as Smart as the Internet. Engineering, 6(7), 778–788, https://doi.org/10.1016/j.eng.2019.11.015.

Razak, A. H. N. A., Ahmad, N. A., Ibrahim, C. K. I. C., Kadir, E. A. and Leardini, P. (2022). Smart Grid Components for Residential Design Application Towards Energy Conservation: A Review. Journal of Engineering Science and Technology, 17, 237–251.

Georgakarakos, A, Mayfield, M., Buckman, A. H., Jubb, S. A. and Wootton, C. (2018). What are Smart Grid Optimised Buildings, in Living and Sustainability: An Environmental Critique of Design and Building Practices, Locally and Globally. London: London South Bank University. 21–36.

Razak, A. H. N. A., Ahmad, N. A. and Leardini, P. (2023). Development of Design Optimization for Smart Grid (DOfSG) Framework for Residential Energy Efficiency via Fuzzy Delphi Method (FDM) Approach, International Journal of Sustainable Construction Engineering and Technology, 14(3), 21-39. https://doi.org/10.30880/ijscet.2023.14.03.003.

Ahmed, Y. (2012). Critical Review of Sustainable Energy Schemes of Trias Energetica. Environmental Science, Renewable Energy.

Gopstein, A., Nguyen, C., O’Fallon, C., Hastings, N., and Wollman, D. (2021). NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 4.0. http://dx.doi.org/10.6028/NIST.SP.1108r3

Lee, J. Y., Verayiah, R., Ong, K. H., Ramasamy, A. K., and Marsadek, M. B. (2020). Distributed Generation: A Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia. Energies (Basel). 13(24). https://doi.org/10.3390/en13246479.

SEDA. (2021). Malaysia’s 1st Pilot Run of Peer-to-Peer (P2P) Energy Trading. Sustainable Energy Development Authority Malaysia (SEDA).

Kakran, S., and Chanana, S. (2018). Smart Operations of Smart Grids Integrated with Distributed Generation: A Review. Renewable and Sustainable Energy Reviews. 81, 524–535. https://doi.org/10.1016/j.rser.2017.07.045.

Neska, E. and Kowalska-Pyzalska, A. (2022). Conceptual Design of Energy Market Topologies for Communities and Their Practical Applications in EU: A Comparison of Three Case Studies. Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112921.

Prinsloo, G., Mammoli, A., and Dobson, R. (2017). Customer Domain Supply and Load Coordination: A Case for Smart Villages and Transactive Control in Rural Off-Grid Microgrids. Energy. 135, 430–441. https://doi.org/10.1016/j.energy.2017.06.106.

Khan, F. A., Pal, N., and Saeed, S. H. (2021). Optimization and Sizing of SPV/Wind Hybrid Renewable Energy System: A Techno-Economic and Social Perspective. Energy. 233, 121114. https://doi.org/10.1016/j.energy.2021.121114.

Tee, W. H., Gan, C. K., and Sardi, J. (2024). Benefits of Energy Storage Systems and its Potential Applications in Malaysia: A Review. Renewable and Sustainable Energy Reviews. 192, 114216. https://doi.org/10.1016/j.rser.2023.114216.

Mazhar, T., Asif, R.N., Malik, M.A., Nadeem, M.A., Haq, N., Iqbal, M., Kamran, M. and Ashraf, S. (2023). Electric Vehicle Charging System in the Smart Grid Using Different Machine Learning Methods’, Sustainability (Switzerland). 15(3). https://doi.org/10.3390/su15032603.

Saad, A. Y. and Ling, Y. Y. (2022). Electricity Demand in Relation to Rise of Electric Vehicles in Malaysia. Journal of Built Environment. 9.

Sato, T., Kammen, D. M., Duan, B., Macuha, M., Zhou, Z., Wu, J., Tariq, M., and Asfaw, S. A. (2015). Smart Grid Standards: Specifications, Requirements, and Technologies. Wiley-Blackwell. https://doi.org/10.1002/978111865372

Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8(1), 18–28. https://doi.org/10.1109/MPE.2009.934876.

Agarwal, R., Garg, M., Tejaswini, D., Garg, V., Srivastava, P., Mathur, J., and Gupta, R. (2023). A Review of Residential Energy Feedback Studies. Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2023.113071.

Minh, Q. N., Nguyen, V. H., Quy, V. K., Ngoc, L. A., Chehri, A., and Jeon, G. (2020). Edge Computing for IoT-Enabled Smart Grid: The Future of Energy. Energies (Basel). 15(17). https://doi.org/10.3390/en15176140.

Hafeez, G., Wadud, Z., Khan, U.I., Khan, I., Shafiq, Z., Usman, M., and Khan, M.U.A. (2020). Efficient Energy Management of IOT-Enabled Smart Homes Under Price-Based Demand Response Program in Smart Grid. Sensors (Switzerland). 20(11). https://doi.org/10.3390/s20113155.

S. Zahurul, Mariun, N., Grozecu, I.V., Tsuyoshi, H., Mitani, Y. Othman, M.L., Hizam, H., and Abidin, I.Z. (2016). Future Strategic Plan Analysis for Integrating Distributed Renewable Generation to smart Grid Through Wireless Sensor Network: Malaysia Prospect. Elsevier Ltd. 53, 978-992. https://doi.org/10.1016/j.rser.2015.09.020.

Philip, A., Islam, S. N., Phillips, N., and Anwar, A. (2022). Optimum Energy Management for Air Conditioners in IoT-Enabled Smart Home’, Sensors. 22(19). https://doi.org/10.3390/s22197102.

Rajpar, A. H., Ali, I., and Eladwi, A. E. (2021). Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review. https://doi.org/10.3390/en14165140

Abdul-Razak, A. H. N., Ahmad, N. A., Ahmad, S. S., Haron, S. N., and Ermeey, A. K. (2019). A Simulation Methodology on Grid Displaced Photovoltaic (PV) Prospective for Existing Terrace House Supply in Malaysian Peninsular, in IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/291/1/012030.

Noman, F. M., Alkawsi, G. A., Abbas, D., Alkahtani, A. A., Tiong S. K., and Ekanayake, J. (2020). Comprehensive Review of Wind Energy in Malaysia: Past, Present, and Future Research Trends. IEEE Access. 8, 124526–124543. https://doi.org/10.1109/ACCESS.2020.3006134.

Rezaeimozafar, M., Monaghan, R. F. D., Barrett, E., and Duffy, M. (2022). A Review of Behind-The-Meter Energy Storage Systems in Smart Grids. Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112573.

Kang, C. Li, Yu, Z. H., Wang, H., and Li, K. (2024). Research on Optimization Method of Home Energy Management System in Smart Grid. Journal of Electrical Engineering & Technology. https://doi.org/10.1007/s42835-024-01807-w.

Hammou Ou Ali, I., Ouassaid, M., Maaroufi, M., and Author, C. (2022). Day-Ahead Power Consumption Scheduling in a Smart Home with Solar Panels and Battery Storage Integration.

Zomer, C., Fossati, M. and Machado, A. (2023). Designing with the Sun: Finding Balance Between Aesthetics and Energy Performance in Building-Integrated Photovoltaic Buildings. Solar Compass. 6, 100046. https://doi.org/10.1016/j.solcom.2023.100046.

Basher, M. K., Nur-E-Alam, M., Rahman, M. M., Alameh, K., and Hinckley, S. (2023). Aesthetically Appealing Building Integrated Photovoltaic Systems for Net-Zero Energy Buildings. Current Status, Challenges, and Future Developments—A Review. MDPI. https://doi.org/10.3390/buildings13040863.

Mohd Jamil, M. R. and Mat Noh, N. (2021). Kepelbagaian Metodologi dalam Penyelidikan Reka Bentuk dan Pembangunan, Third. Bandar Baru Bangi: Gatconst Sdn Bhd,

Ben Mabrouk, N. (2020). Green Supplier Selection Using Fuzzy Delphi Method for Developing Sustainable Supply Chain. Decision Science Letters. 10(1),63–70. https://doi.org/10.5267/j.dsl.2020.10.003.

Oteng, D., Zuo, J., and Sharifi, E. (2022). An Expert-Based Evaluation on End-Of-Life Solar Photovoltaic Management: An Application of Fuzzy Delphi Technique. Sustainable Horizons. 4. https://doi.org/10.1016/j.horiz.2022.100036.

Rejab, M. M., Azmi, N. F. M., and Chuprat, S. (2019). Fuzzy Delphi Method for evaluating HyTEE model (hybrid software change management tool with test effort estimation). International Journal of Advanced Computer Science and Applications. 10(4), 529–535. https://doi.org/10.14569/ijacsa.2019.0100465.

Dabiri, M., Oghabi, M., Sarvari, H., Sabeti, M. S., Kashefi, H., and Chan, D. W. M. (2021). Assessing the Post-Earthquake Temporary Accommodation Risks in Iran Using Fuzzy Delphi Method. The Open Construction & Building Technology Journal. 15(1), 93–105. https://doi.org/10.2174/1874836802115010093.

Noh, N. M. Siraj, S., Halili, S., Jamil, H. M. R. M., and Husin, Z., (2019). Application of Fuzzy Delphi Method As A Vital Lement in Technology as A Tool in Design Thinking Learning. Asia Pacific Journal of Educators and Education, 34, 129–151. https://doi.org/10.21315/apjee2019.34.7.

Mat Rejab, M. (2021). Traceability Model for Test Effort Estimation to Support Software Change Management. PhD Thesis. Universiti Teknologi Malaysia (UTM).

Hopf, K., Sodenkamp, M. and Staake, T. (2018). Enhancing Energy Efficiency in the Residential Sector with Smart Meter Data Analytics. Electronic Markets, 28(4), 453–473. https://doi.org/10.1007/s12525-018-0290-9.

SEDA. (2021). Malaysia Renewable Energy Roadmap: Pathway Toward Low Carbon Energy System, Putrajaya.

Elkholy, M. H., Senjyu, T., Lotfy, M. E., Elgarhy, A., Ali, N. S. and Gaafar. T. S. (2022). Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving. Sustainability (Switzerland). 14(21). https://doi.org/10.3390/su142113840.

Awuku, S. A. Bennadji, A., Muhammad-Sukki, F., and Sellami, N. (2021). Myth or gold? The power of aesthetics in the adoption of building-integrated photovoltaics (BIPVs). Energy Nexus, 4. https://doi.org/10.1016/j.nexus.2021.100021

SEDA. (2022). MyRER- Malaysian Renewable Energy Roadmap.

Downloads

Published

2025-09-30

How to Cite

Abdul Razak, A. H. N., Ahmad, N. A., Sukki, F. M., & Radin Abdul Halim, R. Z. (2025). SMART GRID ENABLER (SGE) FRAMEWORK DEVELOPMENT FOR RESIDENTIAL SECTOR TOWARDS ENERGY CONSERVATION STRATEGIES VIA FUZZY DELPHI METHOD. Journal of Civil Engineering, Science and Technology, 16(2), 154–167. Retrieved from https://publisher.unimas.my/ojs/index.php/JCEST/article/view/9004