REMOVAL OF HEAVY METALS FROM WASTEWATER BY USING PHYTOREMEDIATION TECHNOLOGY

Authors

  • Dhivya Balamoorthy Hydraulic and Water Resource Engineering Department, Wollega University, Nekemte, Ethiopia
  • Prabu Velusamy Construction Technology and Management Department, Wollega University, Nekemte, Ethiopia
  • Badrinarayan Rath Civil Engineering Department, Wollega University, Nekemte, Ethiopia
  • Praveenkumar T R Construction Technology and Management Department, Wollega University, Nekemte, Ethiopia
  • Julla Kabeto Hydraulic and Water Resource Engineering Department, Wollega University, Nekemte, Ethiopia

DOI:

https://doi.org/10.33736/jcest.4473.2022

Keywords:

Heavy metals, Mimosa pudica, phytoremediation, synthetic wastewater, xylem, phloem

Abstract

Contamination of soil and water by toxic metals is a major environmental hazard. The removal of heavy metals from wastewater by chemical methods is very costly and does not apply to the pretreatment process. Hence, phytoremediation process is one of the simplest methods to restore polluted environments. The present research paper investigates the potential of Mimosa Pudica for bio removal of heavy metals like Cd, Pb and Cu from wastewater by using phytoremediation or bioremediation technology. Heavy Metals were detected before and after the process using Atomic Adsorption Spectrometer (AAS). The synthetic wastewater contains Cd, Pb, and Cu at an initial concentration of 0.25mg/l, 0.5mg/l, and 2mg/l was introduced to the soil mass planted by Mimosa Pudica and treated for 16 days through their root. Collected samples were taken for laboratory analysis. The result showed that there was a reduction in Cd, Pb and Cu at a concentration of 0.02mg/l, 0.21mg/l, and 0.4mg/l level of heavy metals from the wastewater. After that, investigation of the potential of Mimosa Pudica accumulates up to 92% of Cd, 58 % of Pb, and 80% of Cu. The evidence presented by this study specified that Mimosa Pudica is an efficient accumulator plant for phytoremediation or bioremediation.

References

Zakaria, N. N., Roslee, A. F. A., Gomez-Fuentes, C., Zulkharnain, A., Abdulrasheed, M., Sabri, S., Ramirez-Moreno, N., Calisto-Ulloa, N., & Ahmad, S. A. (2020). Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals. Revista Mexicana De Ingeniería Química, 19, 1375–1388. https://doi.org/10.24275/rmiq/Bio1072

Utermann, J., Aydın, C. T., Bischoff, N., Böttcher, J., Eickenscheidt, N., Gehrmann, J., König, N., Scheler, B., & Stange, F. (2019). Heavy metal stocks and concentrations in forest soils. In Status and Dynamics of Forests in Germany. Ecological Studies (Analysis and Synthesis). Wellbrock, N., Bolte, A., Eds. Springer: Cham, Switzerland, 237, 199–229. https://doi.org/10.1007/978-3-030-15734-0_7

Wen-Min, C., Chih-Hui, W., Euan K., James, & Jo-Shu, C. (2008). Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica, Journal of Hazardous Materials, 151, 364–371. https://doi.org/10.1016/j.jhazmat.2007.05.082

Mojiri, A. (2011). The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. Journal of Bioenvironmental Science, 5(13), 17-22.

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, Article 6730305. https://doi.org/10.1155/2019/6730305

Wahab, A. S. A., Ismail, S. N. S., Praveena, S. M., & Awang, S. (2014). Heavy metals uptake of water mimosa (Neptunia oleracea) and its safety for human consumption. Iranian Journal of Public Health, 43(Supple 3), 103-111.

Bernhoft, R. A. (2013). Cadmium toxicity and treatment. The Scientific World Journal, 2013, Article 394652. https://doi.org/10.1155/2013/394652

Mohammad, A. M., Eldin, T. A. S., Hassan, M. A., & El-Anadouli, B. E. (2017). Efficient treatment of lead-containing wastewater by hydroxyapatite/chitosan nanostructures. Arabian Journal of Chemistry, 10(5), 683-690. https://doi.org/10.1016/j.arabjc.2014.12.016

Syuhaida, A. W. A., Norkhadijah, S. I. S., Praveena, S. M., & Suriyani, A. (2014). The comparison of phytoremediation abilities of water mimosa and water hyacinth. ARPN Journal of Science and Technology, 4(12), 722-731.

Iloms, E., Ololade, O. O., Ogola, H. J., & Selvarajan, R. (2020). Investigating industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa. International Journal of Environmental Research and Public Health, 17(3), 1-18. https://doi.org/10.3390/ijerph17031096

Ghosh, M. & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1–18. https://doi.org/10.15666/aeer/0301_001018

Dong, J., Wu, F., Huang, R., & Zang, G. (2007). A Chromium tolerant plant growing in Cr contaminated land. International Journal of Phytoremediation, 9(3), 167–179. https://doi.org/10.1080/15226510701375978

Zhang, X. H., Liu, J., Huang, H. T., Chen, J., Zhu, Y. N., & Wang, D. Q. (2007). Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67, 1138–1143. https://doi.org/10.1016/j.chemosphere.2006.11.014

Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376. https://doi.org/10.1016/j.ejar.2020.03.002

Khan, A. H. A., Kiyani, A., Mirza, C. R., Butt, T. A., Barros, R., Ali, B., Iqbal, M., & Yousaf, S. (2021). Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environmental Research, 195, 110780. https://doi.org/10.1016/j.envres.2021.110780

Nguyen, D. T. C., Tran, T. V., & Kumar, P. S. (2022). Invasive plants as biosorbents for environmental remediation: A review. Environmental Chemistry Letters, 20, 1421–1451. https://doi.org/10.1007/s10311-021-01377-7

Joseph, B., George, J., & Mohan, J. (2013). Pharmacology and traditional uses of Mimosa pudica. International Journal of Pharmaceutical Sciences and Drug Research, 5(2), 41-44.

Volkov A. G., Adesina T., Markin V. S., & Jovanov E. (2008). Kinetics and mechanism of Dionaea muscipula Ellis trap closing. Plant Physiology, 146, 694-702. https://doi.org/10.1104/pp.107.108241

Gandhiraja N., Sriram S., Meena V., Srilakshmi K., Sasikumar C., & Rajeshwari R. (2009). Phytochemical screening and antimicrobial activity of the plant extracts of mimosa pudica against selected microbes. Ethnobotanical Leaflets, 13, 618-624.

Chandrashekar, D. K., & Manthale, D. M. (2012). Invention of analgesic and anti-inflammatory activity of ethanolic extract of mimosa pudica linn leaves. Journal of Biomedical and Pharmaceutical, 1(1), 36-38.

Khalid, M. S., Kumar, S. J., Suresh, D. K., Singh, R. K., Reddy, I. N., & Kumar, S. (2011). Evaluation of an anti-diarrhoeal potential of ethanolic extract of mimosa pudica leaves. International Journal of Green Pharmacy, 5(1), 75-78. https://doi.org/10.4103/0973-8258.82096

Bum, E. N., Dawack, D. L., Schmutz, M., Rakotonirina, A., Rakotonirina, S. V., Portet, C., Jeker, A., Olpe, H. R., & Herrling, P. (2004). Anticonvulsant activity of Mimosa pudica decoction. Fitoterapia, 75 (3-4), 309-314. https://doi.org/10.1016/j.fitote.2004.01.012

Ganguly, M., Devi, N., Mahanta, R., & Borthakur M. K. (2007). Effect of Mimosa pudica root extract on vaginal estrous and serum hormones for screening of antifertility activity in albino mice. EPUB, 76(6), 482-485. https://doi.org/10.1016/j.contraception.2007.08.008

Chauhan, B. S. & Johnson, D. E. (2009). Germination, emergence and dormancy of Mimosa pudica. Weed Biology and Management, 9(1), 38-45. https://doi.org/10.1111/j.1445-6664.2008.00316.x

Kinuthia, G. K., Ngure, V., & Beti, D. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports, 10, 1-13. https://doi.org/10.1038/s41598-020-65359-5

Agarwal, M. & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7(4), 387–419. https://doi.org/10.2166/wrd.2016.104

Bjelkova M., Gencurova V., & Griga M. (2011). Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: A potential for phytoremediation of Cd-contaminated soils. Industrial Crops and Products, 33(3), 761–774. https://doi.org/10.1016/j.indcrop.2011.01.020.

Angelova V., Ivanova R., Delibaltova V., & Ivanov K. (2004). Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Industrial Crops and Products, 19(3), 197–205. https://doi.org/10.1016/j.indcrop.2003.10.001

Thompson, D., Bush, E., & Kirk-Ballard, H. (2021). Lead phytoremediation in contaminated soils using ornamental landscape plants. Journal of Geoscience and Environment Protection, 9, 152-164. https://doi.org/10.4236/gep.2021.95011

Chua, J., Banua, J. M., Arcilla, I., Orbecido, A., de Castro, M. E., Ledesma, N., Deocaris, C., Madrazo, C., & Belo, L. (2019). Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon, 5(9), 1-9. https://doi.org/10.1016/j.heliyon.2019.e02440

Satoru I., Yasuhiro I., Masato I., Masato K., Tadashi A., Takeshi S., Yoshihiro H., Tomohito A., Nishizawa N.K., & Hiromi N. (2012). Ionbeam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proceedings of the National Academy of Sciences, 109(47), 19166–19171. https://doi.org/10.1073/pnas.1211132109

Downloads

Published

2022-04-13

How to Cite

Balamoorthy, D. ., Velusamy, P. ., Rath, B. ., T R, P. ., & Kabeto, J. . (2022). REMOVAL OF HEAVY METALS FROM WASTEWATER BY USING PHYTOREMEDIATION TECHNOLOGY. Journal of Civil Engineering, Science and Technology, 13(1), 23–32. https://doi.org/10.33736/jcest.4473.2022