COMPRESSIVE STRENGTH OF FOAMED CONCRETE IN RELATION TO POROSITY USING SEM IMAGES
DOI:
https://doi.org/10.33736/jcest.1005.2019Keywords:
Compressive strength, foamed concrete, porosity, SEM, tonerAbstract
Foamed concrete specimens were examined for compressive strength at (28 and 180) days air sealed curing, as well as at 28 days water cured. Also, the microstructure of fifteen selected FC specimens was investigated for porosity in relation to compressive strength using Scanning Electron Microscopy (SEM) images. Twenty two batches of FC specimens of the densities (1100, 1600 and 1800) kg/m3 were made with fine sand and brick aggregates with toner and metakaolin (MK) inclusion as additives, they were casted in polystyrene cube moulds of (100x100x100) mm. Results show, it is possible to produce FC with high compressive strength in the range of (28.5 to 59.2) N/mm2, with a variety of materials, while the 1600 kg/m3 density with the inclusion of toner and MK20 is the favourite, which can be used for structural elements. Conventionally, compressive strength is in an inverse relationship with porosity, as porosity increases, compressive strength decreases, but using toner and MK20 can alter this relationship between porosity and compressive strength, where by it is possible to produce a relatively light weight high porosity FC matrix to exhibit high compressive strength. Maturity of the FC at 180 days, can demonstrate an increase in the compressive strength. The microstructural investigations through SEM images revealed, the FC mix made with sand or brick only, exhibits an irregular shape factor of the micro pore system with the pore size in the range of (10 to 70) µm, while those made with the inclusion of toner and MK20 have a regular shape factor of a matrix of finer micro pore system of the sizes in the range of (0.01 to 10.0) µm, all of which are evenly distributed, and have a big influence on the properties of the FC, particularly, on compressive strength. Contrary to the conventional method of air sealed curing for FC, water curing method can equally give the same or a slightly better result in respect of compressive strength for some particular densities.
References
Nambiar E.K.K and Ramamurthy K., 2007b. Sorption characteristics of foam concrete, Cement and Concrete Research 37, pp. 1341-1347.
https://doi.org/10.1016/j.cemconres.2007.05.010
Mydin, M.A.O. and Wang, Y.C. (2011). 'Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression', Thin-Walled Structures, 49(1), pp. 66-76.
https://doi.org/10.1016/j.tws.2010.08.007
British Cement Association, Ref. 46.042, 1994, pp 4. Foamed concrete; Composition and Properties.
Dransfield J.M., 2000. Foamed Concrete: Introduction to the Product and its Properties, one-day awareness seminar on 'Foamed Concrete: Properties, Applications and Potential, University of Dundee, Scotland, pp.1-11.
Jones, M.R. and McCarthy, A., 2005b. Preliminary views on the potential of foamed concrete as a structural material. Magazine of Concrete Research 57(1), pp. 21-31.
https://doi.org/10.1680/macr.2005.57.1.21
Jones M.R., 2000. Foamed concrete for structural use, one-day awareness seminar on 'Foamed Concrete: Properties, Applications and Potential', University of Dundee, Scotland pp. 54-79.
Ramamurthy K., Nambiar E.K.K., and Ranjani G.I.S., 2009. A classification of studies on properties of foam concrete. Cement and Concrete Composites 31, 388-396.
https://doi.org/10.1016/j.cemconcomp.2009.04.006
Visagie M. and Kearsely E.P., 2002. Properties of foamed concrete as influenced by air‐void parameters. Concrete Beton 101, 8-14.
Luping T., 1986. A study of the quantitative relationship between strength and pore‐size distribution of porous materials. Cement and Concrete Research 16, 87-96.
https://doi.org/10.1016/0008-8846(86)90072-4
Durack J.M and Weiqing L., 1998. The properties of foamed air cured fly ash based concrete for masonry production. In: Page A, Dhanasekar M, Lawrence S, editors. Proceedings of 5th Australasian Masonry Conference, Gladstone,Queensland, Australia, pp. 129-38.
Ambroise J., Murat M. and Pera J., 1985. Hydration reaction and hardening of calcined clays and related minerals. Cement and Concrete Research 15: 261-268.
https://doi.org/10.1016/0008-8846(85)90037-7
Khatib J.M. and Wild S., 1996. Pore size distribution of metakaolin paste. Cement and Concrete Research 26(10), pp. 1545-1553.
https://doi.org/10.1016/0008-8846(96)00147-0
Gleize P.J.P., Cyr M. and Escadeillas G., 2007. Effects of metakaolin on autogenous shrinkage of cement pastes. Cement and Concrete Comp 29: 80-87.
https://doi.org/10.1016/j.cemconcomp.2006.09.005
Khatib J.M. and Clay R.M. 2004. Absorption characteristics of metakaolin concrete. Cement and Concrete Research 34(1):19-29.
https://doi.org/10.1016/S0008-8846(03)00188-1
Bai J., Wild S. and Gailius A., 2004. Accelerating Early Strength Development of Concrete, using Metakaolin as an Admixture. Materials Science (medziagotyra). Vol. 10, no. 4.
Debieb F. and Kenai S. b., 2008. The use of coarse and fine crushed bricks as aggregate in concrete. Construction and Building Materials 22, 886-893.
https://doi.org/10.1016/j.conbuildmat.2006.12.013
Khatib J.M., 2005. Properties of concrete incorporating fine recycled aggregate. Cement and Concrete Research 35:763-9.
https://doi.org/10.1016/j.cemconres.2004.06.017
Poon C.S and Chan D., 2007. The use of recycled aggregate in concrete in Hong Kong. Resources, Conservation Recycling, 50(3): 293-305.
https://doi.org/10.1016/j.resconrec.2006.06.005
Cachim P.B., 2009. Mechanical properties of brick aggregate concrete. Construction and Building Materials 23, 1292-1297.
https://doi.org/10.1016/j.conbuildmat.2008.07.023
Ibrahim N.M., Salehuddin S., Amat R.C., Rahim N.L and Izhar T.N.T., 2013. Performance of Lightweight Foamed Concrete with Waste Clay Brick as Coarse Aggregate. APCBEE, Procedia 5, 497 - 501.
https://doi.org/10.1016/j.apcbee.2013.05.084
Aliabdo A.A., Abd-Elmoaty A.M., and Hassan H.H., 2014. Utilization of crushed clay brick in cellular concrete production. Alexandria Engineering Journal, 53, 119-130.
https://doi.org/10.1016/j.aej.2013.11.005
Sandra V.P, 2014. Harvard Physico-chemical and toxicological studies of engineered nanoparticles emitted from printing equipment. Harvard school of public health.
Jones, M.R. and McCarthy, A., 2006. Heat of hydration in foamed concrete: Effect of mix constituents and Plastic density. Cement and Concrete Research 36(6), pp. 1032-1041.
https://doi.org/10.1016/j.cemconres.2006.01.011
Nicholas B Winter, 2012. Scanning Electron Microscopy of the Cement and Concrete.
BS EN 12390-3:2009, Testing hardened concrete.
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article, the corresponding author on behalf of all authors will be asked to complete and upload the Copyright Transfer Form (refer to Copyright Issues for more information on this) alongside the electronic proof file.
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and refer the publication in the Journal.
2) For open-access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds the copyright or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subjected to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) are responsible to ensure their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. The corresponding author has obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If the submitted manuscript includes materials from others, the authors have obtained permission from the copyright owners.
5) In signing this statement, the author(s) declare that the researches which they have conducted comply with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving humans or the use of animal samples must obtain approval from the Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that they have no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor(s) or UNIMAS Publisher.