Impulse Breakdown Characteristics of Main Gap in the Presence of a Local Discharge

  • Abderrahmane Settaouti Electrotechnic Department, University of Sciences and Technology, P. O. Box. 1505 El-M'naouar, Oran - Algeria
Keywords: Breakdown, Electrical discharge; Electric field; High voltage; Triggered

Abstract

The characteristics of impulse breakdown voltages and the influence of the position of third electrode in air gap are investigated experimentally to study the parameters influencing the breakdown voltage in the presence of metallic objects around the high voltage power apparatus with air insulation. Experimental results show that the factors affecting the breakdown voltage are the shape and the size of the grounded electrode, the third metallic electrode location and the gap length. A comparison between negative and positive polarities of the applied voltages indicates an important influence of the polarity in the dielectric breakdown mechanism. The possible mechanism by which the local electric discharge initiates the main dielectric breakdown seems to be the high electric field around the local discharge channel and the streamers protruding from its surface.

References

Xiong, Z., Kushner, M.J. (2011). Photo-triggering and Secondary Electron Produced Ionization in Electric Discharge ArF* Excimer Lasers. J. Appl. Phys., Vol. 110, 083304.

https://doi.org/10.1063/1.3644953

Cheng, X.B., Liu, J.L., Qian, B.L., Chen, Z., Feng, J.H. (2010). Research of a High-Current Repetitive Triggered Spark-Gap Switch and its Application. IEEE Trans. Plasma Sci., Vol. 38(3), 516-522.

https://doi.org/10.1109/TPS.2009.2038381

Li, L., Li, C., Xiangdong, Q., Fuchang, L., Yuan, P. (2012). Modeling of Switching Delay in Gas-Insulated Trigatron Spark Gaps. J. Appl. Phys., Vol. 111, 053306.

https://doi.org/10.1063/1.3693033

Negara, Y., Yaji, K., Imasaka, K., Hayashi, N., Suehiro, J., Hara, M. (2007). AC Particle-Triggered Corona Discharge in Low Pressure SF6 Gas. IEEE Trans. Diel. Elect. Ins., Vol. 14(1), 91-100.

https://doi.org/10.1109/TDEI.2007.302876

Sharma, R.K., Chavan, S.G., Sadhu, R.K., Bhattacharya, S., Srivastava, G.P. (2013). Experimental Study of Flat Format Multichannel Triggered Rail Spark Gap. IEEE trans. on Plasma Sci., Vol. 41(10), 2666-2670.

https://doi.org/10.1109/TPS.2013.2277873

Forestier, B., Houard, A., Revel, I., Durand, M., André, Y.B., Prade, B., Jarnac, A., Carbonnel, J., Le Nevé, M., de Miscault, J.C., Esmiller, B., Chapuis, D., Mysyrowicz, A. (2012). Triggering, Guiding and Deviation of Long Air Spark Discharges with Femtosecond Laser Filament. AIP Advances, Vol. 2, 012151.

https://doi.org/10.1063/1.3690961

Kikuchi, J., Suzuki, Y., Muto, T., Ibuka, S., Ishii, S. (2012). Effect of DC Pre-Discharge on the Generation of Atmospheric Pulsed Microdischarges. Japanese J. Appl. Phys., Vol. 51, 046001.

https://doi.org/10.1143/JJAP.51.046001

Niermann, B., Budunoglu, I.L., Gurel, K., Boke, M., Ilday, F.O., Winter, J. (2012). Application of a Modelocked Fiber Laser for Highly Time Resolved Broadband Absorption Spectroscopy and Laser-Assisted Breakdown on Micro-plasmas. J. Phys. D: Appl. Phys., Vol. 45, 245202.

https://doi.org/10.1088/0022-3727/45/24/245202

Hara, M., Negara, Y., Setoguchi, M., Kurihara, T., Suehiro, J., Hayashi, N. (2005). Particle-triggered Prebreakdown Phenomena in Atmospheric Air Gap under ac Voltage. IEEE Trans. Diel. Elect. Ins., Vol. 12(5), 1071-1081.

https://doi.org/10.1109/TDEI.2005.1522199

Schoenbach, K., Kolb, J., Xiao, S., Katsuki, S., Minamitani, Y., Joshi, R. (2008). Electrical Breakdown of Water in Microgaps. Plasma Sources Sci. Technol., Vol. 17, 024010.

https://doi.org/10.1088/0963-0252/17/2/024010

Settaouti, A. (2010). Monte Carlo Simulation of Avalanche Formation and Streamer Discharge., Electr. Eng., Vol. 92, 35-42.

https://doi.org/10.1007/s00202-010-0157-3

Settaouti, A., Settaouti, L. (2011). Monte Carlo Simulation of Electrical Corona Discharge in Air. Elect. Pow. Syst. Res., Vol. 81, 84-89.

https://doi.org/10.1016/j.epsr.2010.07.014

Published
2019-09-30
How to Cite
Settaouti, A. (2019). Impulse Breakdown Characteristics of Main Gap in the Presence of a Local Discharge. Journal of Applied Science & Process Engineering, 6(2), 413-423. https://doi.org/10.33736/jaspe.983.2019