Impulse Breakdown Characteristics of Main Gap in the Presence of a Local Discharge

  • Abderrahmane Settaouti Electrotechnic Department, University of Sciences and Technology, P. O. Box. 1505 El-M'naouar, Oran - Algeria
Keywords: Breakdown, Electrical discharge; Electric field; High voltage; Triggered


The characteristics of impulse breakdown voltages and the influence of the position of third electrode in air gap are investigated experimentally to study the parameters influencing the breakdown voltage in the presence of metallic objects around the high voltage power apparatus with air insulation. Experimental results show that the factors affecting the breakdown voltage are the shape and the size of the grounded electrode, the third metallic electrode location and the gap length. A comparison between negative and positive polarities of the applied voltages indicates an important influence of the polarity in the dielectric breakdown mechanism. The possible mechanism by which the local electric discharge initiates the main dielectric breakdown seems to be the high electric field around the local discharge channel and the streamers protruding from its surface.


Xiong, Z., Kushner, M.J. (2011). Photo-triggering and Secondary Electron Produced Ionization in Electric Discharge ArF* Excimer Lasers. J. Appl. Phys., Vol. 110, 083304.

Cheng, X.B., Liu, J.L., Qian, B.L., Chen, Z., Feng, J.H. (2010). Research of a High-Current Repetitive Triggered Spark-Gap Switch and its Application. IEEE Trans. Plasma Sci., Vol. 38(3), 516-522.

Li, L., Li, C., Xiangdong, Q., Fuchang, L., Yuan, P. (2012). Modeling of Switching Delay in Gas-Insulated Trigatron Spark Gaps. J. Appl. Phys., Vol. 111, 053306.

Negara, Y., Yaji, K., Imasaka, K., Hayashi, N., Suehiro, J., Hara, M. (2007). AC Particle-Triggered Corona Discharge in Low Pressure SF6 Gas. IEEE Trans. Diel. Elect. Ins., Vol. 14(1), 91-100.

Sharma, R.K., Chavan, S.G., Sadhu, R.K., Bhattacharya, S., Srivastava, G.P. (2013). Experimental Study of Flat Format Multichannel Triggered Rail Spark Gap. IEEE trans. on Plasma Sci., Vol. 41(10), 2666-2670.

Forestier, B., Houard, A., Revel, I., Durand, M., André, Y.B., Prade, B., Jarnac, A., Carbonnel, J., Le Nevé, M., de Miscault, J.C., Esmiller, B., Chapuis, D., Mysyrowicz, A. (2012). Triggering, Guiding and Deviation of Long Air Spark Discharges with Femtosecond Laser Filament. AIP Advances, Vol. 2, 012151.

Kikuchi, J., Suzuki, Y., Muto, T., Ibuka, S., Ishii, S. (2012). Effect of DC Pre-Discharge on the Generation of Atmospheric Pulsed Microdischarges. Japanese J. Appl. Phys., Vol. 51, 046001.

Niermann, B., Budunoglu, I.L., Gurel, K., Boke, M., Ilday, F.O., Winter, J. (2012). Application of a Modelocked Fiber Laser for Highly Time Resolved Broadband Absorption Spectroscopy and Laser-Assisted Breakdown on Micro-plasmas. J. Phys. D: Appl. Phys., Vol. 45, 245202.

Hara, M., Negara, Y., Setoguchi, M., Kurihara, T., Suehiro, J., Hayashi, N. (2005). Particle-triggered Prebreakdown Phenomena in Atmospheric Air Gap under ac Voltage. IEEE Trans. Diel. Elect. Ins., Vol. 12(5), 1071-1081.

Schoenbach, K., Kolb, J., Xiao, S., Katsuki, S., Minamitani, Y., Joshi, R. (2008). Electrical Breakdown of Water in Microgaps. Plasma Sources Sci. Technol., Vol. 17, 024010.

Settaouti, A. (2010). Monte Carlo Simulation of Avalanche Formation and Streamer Discharge., Electr. Eng., Vol. 92, 35-42.

Settaouti, A., Settaouti, L. (2011). Monte Carlo Simulation of Electrical Corona Discharge in Air. Elect. Pow. Syst. Res., Vol. 81, 84-89.

How to Cite
Settaouti, A. (2019). Impulse Breakdown Characteristics of Main Gap in the Presence of a Local Discharge. Journal of Applied Science & Process Engineering, 6(2), 413-423.