An Insight into Water and Temperature Management in Unitised Regenerative Fuel Cell (URFC) during Mode Change

Authors

  • Ahmad Adam Danial Shahril Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • CT Aisyah Sarjuni Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Edy Herianto Majlan Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Mohd Shahbudin Mastar Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia & Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Abu Bakar Sulong Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia & Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Bee Huah Lim Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Keywords:

unitised regenerative fuel cell, mode transition, water electrolyser, computational fluid dynamics

Abstract

Although water-related issues are no stranger to conventional fuel cells, unitised regenerative fuel cells (URFC) sustain amplified effects from this condition due to their transition states. Fuel cell (FC) mode start-ups post water electrolyser (WE) operations suffer significantly due to flooding. Past studies validated the significance of water and heat distribution towards the dynamic response of URFC. Due to complications involved in the numerical study of mode change conditions, this paper suggests the basic procedures required for numerical analysis of the WE to FC mode conversion in a URFC where the final result of each mode is taken as the initial result for the next one. Water removal through gas purging is currently one of the best methods to reduce transient time and increase FC start-up efficiency. However, crucial purging conditions such as operating current density, temperature and purging period play an important role in the successful transition. Lower operating current density, ranging below 0.02A/cm2 is reported to have a smoother transition compared to current density above 0.12A/cm2. Gas purge relative humidity is only effective up to 4% at the anode and poses no effect during a severe flooding condition. Furthermore, the temperature has the lowest response towards the cell heat source, increasing the transient period. The cell experiences high WE mode efficiency at 80˚C, but it suffers significant catalytic loss. The insight will provide a more profound comprehension of water management during WE mode and a suitable administrative method to achieve smooth FC start-ups.

 

 

References

Becker, S., Frew, B. A., Andresen, G. B., Zeyer, T., Schramm, S., Greiner, M., & Jacobson, M. Z. (2014). Features of a fully renewable US electricity system: Optimised mixes of wind and solar PV and transmission grid extensions. Energy, 72, 443–458. https://doi.org/10.1016/j.energy.2014.05.067

Weitemeyer, S., Kleinhans, D., Vogt, T., & Agert, C. (2015). Integration of Renewable Energy Sources in future power systems: The role of storage. Renewable Energy, 75, 14–20. https://doi.org/10.1016/j.renene.2014.09.028

Gabbasa, M., Sopian, K., Fudholi, A., & Asim, N. (2014). A review of unitised regenerative fuel cell stack: Material, design and research achievements. International Journal of Hydrogen Energy, 39(31), 17765–17778. https://doi.org/10.1016/j.ijhydene.2014.08.121

Vincent, I., Lee, E., & Kim, H. (2020). Solutions to the water flooding problem for unitised regenerative fuel cells : status and perspectives. RSC Advances, 16844–16860. https://doi.org/10.1039/d0ra00434k

Guo, H., Guo, Q., Ye, F., Ma, C. F., Liao, Q., & Zhu, X. (2019). Improving the electric performance of a unitised regenerative fuel cell during mode switching through mass transfer enhancement. Energy Conversion and Management, 188, 27–39. https://doi.org/10.1016/j.enconman.2019.03.033

Guo, Q., Guo, H., Ye, F., & Ma, C. F. (2023). Experimental and numerical studies of mode switching performance and water transfer in unitized regenerative fuel cells with different channel structures. Energy Conversion and Management, 280. https://doi.org/10.1016/j.enconman.2023.116810

Tran, M., & Demuren, A. (2025). Thermal management for optimal performance of polymer electrolyte membrane unitized regenerative fuel cells. Next Energy, 8, 100271. https://doi.org/10.1016/j.nxener.2025.100271

Chen, W., Meng, K., Luo, Z., Deng, Q., Zhang, N., Chen, K., & Chen, B. (2025). Segmented current diagnostics for mode switching and fuel cell mode startup behavior in unitized regenerative proton exchange membrane fuel cells. Energy Conversion and Management, 336, 119894. https://doi.org/10.1016/j.enconman.2025.119894

Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysis, 2(8), 1765–1772. https://doi.org/10.1021/cs3003098

Yan Li, H., Guo, H., Ye, F., & Fang Ma, C. (2018). Experimental investigation on voltage response to operation parameters of a unitised regenerative fuel cell during mode switching from fuel cell to electrolysis cell. International Journal of Energy Research, 42(10), 3378–3389. https://doi.org/10.1002/er.4073

Yuan, X. M., Ye, F., Liu, J. X., Guo, H., & Ma, C. F. (2019). Voltage response and two-phase flow during mode switching from fuel cell to water electrolyser in a unitised regenerative fuel cell. International Journal of Hydrogen Energy, 44(30), 15917–15925. https://doi.org/10.1016/j.ijhydene.2018.07.017

Klose, C., Saatkamp, T., Münchinger, A., Bohn, L., Titvinidze, G., Breitwieser, M., Kreuer, K. D., & Vierrath, S. (2020). All-Hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency. Advanced Energy Materials, 10(14), 1–9. https://doi.org/10.1002/aenm.201903995

Immerz, C., Bensmann, B., Trinke, P., Suermann, M., & Hanke-Rauschenbach, R. (2018). Local current density and electrochemical impedance measurements within 50 cm single-channel PEM electrolysis cell. Journal of The Electrochemical Society, 165(16), F1292–F1299. https://doi.org/10.1149/2.0411816jes

Aubras, F., Rhandi, M., Deseure, J., Kadjo, A. J. J., Bessafi, M., Majasan, J., Grondin-Perez, B., Druart, F., & Chabriat, J. P. (2021). Dimensionless approach of a polymer electrolyte membrane water electrolysis: Advanced analytical modelling. Journal of Power Sources, 481, 228858. https://doi.org/10.1016/j.jpowsour.2020.228858

Guarnieri, M., Alotto, P., & Moro, F. (2015). Modeling the performance of hydrogen-oxygen unitised regenerative proton exchange membrane fuel cells for energy storage. Journal of Power Sources, 297, 23–32. https://doi.org/10.1016/j.jpowsour.2015.07.067

Chandesris, M., Médeau, V., Guillet, N., Chelghoum, S., Thoby, D., & Fouda-Onana, F. (2015). Membrane degradation in PEM water electrolyser: Numerical modeling and experimental evidence of the influence of temperature and current density. International Journal of Hydrogen Energy, 40(3), 1353–1366. https://doi.org/10.1016/j.ijhydene.2014.11.111

Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer electrolyte fuel cell. Journal of Electrochemical Society, 138, 498–501. https://doi.org/10.1295/kobunshi.57.498

Xiao, H., Guo, H., Ye, F., & Ma, C. (2016). Numerical study of the dynamic response of heat and mass transfer to operation mode switching of a unitised regenerative fuel cell. Energies, 9(12). https://doi.org/10.3390/en9121015

Wang, L., Guo, H., Ye, F., & Ma, C. (2016). Two-dimensional simulation of mass transfer in unitized regenerative fuel cells under operation mode switching. Energies, 9(1), 47. https://doi.org/10.3390/en9010047

Guo, H., Wang, L. L., Yi, X. L., Ye, F., & Ma, C. F. (2018). Simulation of mode-switching methods’ Effect on mass transfer in a unitized regenerative fuel cell. Journal of Energy Engineering, 145(1). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000589

Guo, Q., Guo, H., Ye, F., & Ma, C. F. (2022). Effect of liquid water accumulation in electrolytic cell mode on start-up performance of fuel cell mode of unitised regenerative fuel cells. Energy Conversion and Management, 254. https://doi.org/10.1016/j.enconman.2022.115288

Guo, H., Guo, Q., Ye, F., Fang, C., Zhu, X., & Liao, Q. (2019). Three-dimensional two-phase simulation of a unitised regenerative fuel cell during mode switching from electrolytic cell to fuel cell. Energy Conversion and Management, 195, 989–1003. https://doi.org/10.1016/j.enconman.2019.05.069

Ferrero, D., & Santarelli, M. (2017). Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells. Energy Conversion and Management, 148(2017), 16–29. https://doi.org/10.1016/j.enconman.2017.05.059

Ito, H., Maeda, T., Kato, A., Yoshida, T., & Ulleberg, Ø. (2010). gas purge for switching from electrolysis to fuel cell operation in polymer electrolyte unitized reversible fuel cells. Journal of The Electrochemical Society, B1072–B1080. https://doi.org/10.1149/1.3428709

Toghyani, S., Afshari, E., Baniasadi, E., Atyabi, S. A., & Naterer, G. F. (2018). Thermal and electrochemical performance assessment of a high temperature PEM electrolyser. Energy, 152, 237–246. https://doi.org/10.1016/j.energy.2018.03.140

Upadhyay, M., Kim, A., Paramanantham, S. S. S., Kim, H., Lim, D., Lee, S., Moon, S., & Lim, H. (2022). Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition. Applied Energy, 306(PA), 118016. https://doi.org/10.1016/j.apenergy.2021.118016

Sun Y., Mao L., Wang H., Liu Z., Lu S.(2022). Simulation study on magnetic field distribution of PEMFC, Int. J. Hydrogen Energy. 47, 33439–33452. https://doi.org/10.1016/j.ijhydene.2022.07.228.

Fan, L., Niu, Z., Zhang, G., & Jiao, K. (2018). Optimisation design of the cathode flow channel for proton exchange membrane fuel cells. Energy Conversion and Management, 171(May), 1813–1821. https://doi.org/10.1016/j.enconman.2018.06.111

Sarjuni, C. T. A., Lim, B. H., Majlan, E. H., Rosli, M. I., & Wong, W. Y. (2023). Analysis of fluid flow behaviour in different proton exchange membrane fuel cell flow field configurations. Asia-Pacific Journal of Chemical Engineering, March, 1–13. https://doi.org/10.1002/apj.2939

Wu, H. W., Shih, G. J., & Chen, Y. Bin. (2018). Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement. Applied Energy, 220(March), 47–58. https://doi.org/10.1016/j.apenergy.2018.03.030

Guo, H., Song, J., Ye, F., & Fang, M. A. C. (2022). Dynamic response during mode switching of unitised regenerative fuel cells with orientational flow channels. Renewable Energy, 188, 698–710. https://doi.org/10.1016/j.renene.2022.02.049

Ribeirinha, P., Abdollahzadeh, M., Pereira, A., Relvas, F., Boaventura, M., & Mendes, A. (2018). High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling. Applied Energy, 215(February), 659–669. https://doi.org/10.1016/j.apenergy.2018.02.029

Han, C., & Chen, Z. (2018). Study on electrochemical and mass transfer coupling characteristics of proton exchange membrane (PEM) fuel cell based on a fin-like electrode surface. International Journal of Hydrogen Energy, 43(16), 8026–8039. https://doi.org/10.1016/j.ijhydene.2018.02.177

Wang Z. H., Wang C. Y. (2000). Two-phase flow and transport in the interdigitated air cathode of proton exchange membrane fuel cells, ASME Int. Mech. Eng. Congr. Expo. Proc. 2000-S, 27–33. https://doi.org/10.1115/IMECE2000-1363.

Ferrero D., Santarelli M. (2017). Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells, Energy Convers. Manag. 148, 16–29. https://doi.org/10.1016/j.enconman.2017.05.059.

Meng H. (2009). Multi-dimensional liquid water transport in the cathode of a PEM fuel cell with consideration of the micro-porous layer (MPL), Int. J. Hydrogen Energy. 34, 5488–5497. https://doi.org/10.1016/j.ijhydene.2009.04.067.

Dickinson E. J. F., Hinds G. (2019). The Butler-Volmer equation for Polymer Electrolyte Membrane Fuel Cell (PEMFC) Electrode Kinetics: A Critical Discussion, J. Electrochem. Soc. 166, F221–F231. https://doi.org/10.1149/2.0361904jes.

Chugh S., Chaudhari S., Sonkar K., Sharma A., Kapur G. S., Ramakumar S. S. V. (2020). Experimental and modelling studies of low temperature PEMFC performance, Int. J. Hydrogen Energy. 45, 8866–8874. https://doi.org/10.1016/j.ijhydene.2020.01.019.

Grigoriev, S. A., Millet, P., Porembsky, V. I., & Fateev, V. N. (2011). Development and preliminary testing of a unitised regenerative fuel cell based on PEM technology. International Journal of Hydrogen Energy, 36(6), 4164–4168. https://doi.org/10.1016/j.ijhydene.2010.07.011

Ito, H., Maeda, T., Nakano, A., Hwang, C. M., Ishida, M., Yokoi, N., Hasegawa, Y., Kato, A., & Yoshida, T. (2010). Influence of different gas diffusion layers on the water management of polymer electrolyte unitized reversible fuel cell. ECS Transactions, 33(1), 945–954. https://doi.org/10.1149/1.3484588

Hasran, U. A., Pauzi, A. M., Basri, S., & A. Karim, N. (2018). Recent perspectives and crucial challenges on Unitised Regenerative Fuel Cell (URFC). Jurnal Kejuruteraan, 1, 37–46. https://doi.org/10.17576/jkukm-2018-si1(1)-06

Faustini, M., Giraud, M., Jones, D., Rozière, J., Dupont, M., Porter, T. R., Nowak, S., Bahri, M., Ersen, O., Sanchez, C., Boissière, C., Tard, C., & Peron, J. (2019). Hierarchically structured ultraporous iridium-based materials: A novel catalyst architecture for proton exchange membrane water electrolyzers. Advanced Energy Materials, 9(4), 1–11. https://doi.org/10.1002/aenm.201802136

Cruz, J. C., Barbosa, R., Escobar, B., Zarhri, Z., Trejo-Arroyo, D. L., Pamplona, B., & Gómez-Barba, L. (2020). Electrochemical and microstructural analysis of a modified gas diffusion layer for a PEM water electrolyser. International Journal of Electrochemical Science, 15, 5571–5584. https://doi.org/10.20964/2020.06.12

Fornaciari, J. C., Gerhardt, M. R., Zhou, J., Regmi, Y. N., Danilovic, N., Bell, A. T., & Weber, A. Z. (2020). The role of water in vapor-fed proton-exchange-membrane electrolysis. Journal of The Electrochemical Society, 167(10), 104508. https://doi.org/10.1149/1945-7111/ab9b09

Yuan, X. M., Guo, H., Ye, F., & Ma, C. F. (2019). Experimental study of gas purge effect on cell voltage during mode switching from electrolyser to fuel cell mode in a unitised regenerative fuel cell. Energy Conversion and Management, 186, 258–266. https://doi.org/10.1016/j.enconman.2019.02.067

Tang, Y., Yuan, W., Pan, M., Li, Z., Chen, G., & Li, Y. (2010). Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes. Applied Energy, 87(4), 1410–1417. https://doi.org/10.1016/j.apenergy.2009.08.047

Liu, J. X., Guo, H., Yuan, X. M., Ye, F., & Ma, C. F. (2018). Experimental investigation on two-phase flow in a unitised regenerative fuel cell during mode switching from water electrolyser to fuel cell. International Journal of Energy Research, 42(8), 2823–2834. https://doi.org/10.1002/er.4074

Ming, X., Guo, H., Xing, J., Ye, F., & Fang, C. (2018). Influence of operation parameters on mode switching from electrolysis cell mode to fuel cell mode in a unitised regenerative fuel cell. Energy, 162, 1041–1051. https://doi.org/10.1016/j.energy.2018.08.095

Li, P., Qiu, D., Peng, L., Shen, S., & Lai, X. (2022). Analysis of degradation mechanism in unitised regenerative fuel cell under the cyclic operation. Energy Conversion and Management, 254, 115210. https://doi.org/10.1016/j.enconman.2022.115210

Wahdame, B., Candusso, D., François, X., Harel, F., Péra, M., Hissel, D., & Kauffmann, J. (2007). Comparison between two PEM fuel cell durability tests performed at constant current and under solicitations linked to transport mission profile. 32, 4523–4536. https://doi.org/10.1016/j.ijhydene.2007.03.013

Shin, H. S., & Oh, B. S. (2020). Water transport according to temperature and current in PEM water electrolyser. International Journal of Hydrogen Energy, 45(1), 56–63. https://doi.org/10.1016/j.ijhydene.2019.10.209

Wang, M., Guo, H., & Ma, C. (2006). Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed. Journal of Power Sources, 157, 181–187. https://doi.org/10.1016/j.jpowsour.2005.08.012

Xiao, H., Dai, L. Y., Song, J., Guo, H., Ye, F., & Ma, C. F. (2018). Dynamic response of a unitised regenerative fuel cell under various ways of mode switching. International Journal of Energy Research, 42(3), 1328–1337. https://doi.org/10.1002/er.3934

Meng, H. (2007). Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model. Journal of Power Sources, 171, 738–746. https://doi.org/10.1016/j.jpowsour.2007.06.029

Liu, J. X., Guo, H., Yuan, X. M., Ye, F., & Ma, C. F. (2019). Effect of mode switching on the temperature and heat flux in a unitised regenerative fuel cell. International Journal of Hydrogen Energy, 44(30), 15926–15932. https://doi.org/10.1016/j.ijhydene.2018.05.113

Guo, Q., Guo, H., Ye, F., Ma, C. F., Liao, Q., & Zhu, X. (2019). Heat and mass transfer in a unitised regenerative fuel cell during mode switching. International Journal of Energy Research, 43(7), 2678–2693. https://doi.org/10.1002/er.4319

Bhosale A. C., Meenakshi S., Ghosh P. C. (2017). Root cause analysis of the degradation in a unitized regenerative fuel cell, J. Power Sources. 343 275–283. https://doi.org/10.1016/j.jpowsour.2017.01.060.

Speder, J., Zana, A., Spanos, I., Kirkensgaard, J. J. K., Mortensen, K., Hanzlik, M., & Arenz, M. (2014). Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts e The influence of the platinum to carbon ratio on the degradation rate. Journal of Power Sources, 261, 14–22. https://doi.org/10.1016/j.jpowsour.2014.03.039

Regmi, Y. N., Peng, X., Fornaciari, J. C., Wei, M., Myers, D. J., Weber, A. Z., & Danilovic, N. (2020). A low temperature unitised regenerative fuel cell realising 60% round trip efficiency and 10,000 cycles of durability for energy storage applications. Energy & Environmental Science. 3(7), 2096-2105. https://doi.org/10.1039/C9EE03626A

Downloads

Published

2025-10-31

How to Cite

Shahril, A. A. D. ., Sarjuni, C. A. ., Majlan, E. H. ., Mastar, M. S. ., Sulong, A. B. ., & Lim, B. H. (2025). An Insight into Water and Temperature Management in Unitised Regenerative Fuel Cell (URFC) during Mode Change. Journal of Applied Science &Amp; Process Engineering, 12(2), 110–124. Retrieved from https://publisher.unimas.my/ojs/index.php/JASPE/article/view/9535