Physico-Mechanical, Morphological Properties of Polyvinyl Alcohol/Palm Kernel Shell/Coconut Kernel Shell Elastomeric Polymer Nanocomposites

Authors

  • Josephine Chang Hui Lai Department of Chemical Engineering, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
  • Nor Liyana Yusof Department of Chemical Engineering, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia

DOI:

https://doi.org/10.33736/jaspe.951.2018

Keywords:

Elastomeric polymer nanocomposites (EPNCs), polyvinyl alcohol, palm kernel shell, coconut kernel shell.

Abstract

In this study, the physico-mechanical and morphological properties of polyvinyl alcohol/palm kernel shell/coconut kernel shell elastomeric polymer nanocomposites (PVA/PKS/CKS EPNCs) were investigated. PVA/PKS/CKS EPNCs were prepared via solution casting method and the properties of the elastomeric polymer nanocomposites were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), tensile testing and moisture absorption test. Test results showed that increasing the PVA content increased the mechanical properties of elastomeric polymer nanocomposites as well as provided better surface morphology. However, beyond certain percentage of PVA content, the moisture absorption increased too. Therefore, 55wt% of PVA/PKS/CKS EPNCs was chosen as the best elastomeric polymer nanocomposites as it had the best overall properties from the aspect of physico-mechanical, morphological and moisture absorption.

References

Lai, J. C. H., Rahman, M. R. and Hamdan, S. (2017). Physical, Mechanical, Morphological and Thermal Analysis of Styrene-Co-Glycidyl Methacrylate/Fumed Silica/Clay Nanocomposites. Jurnal Teknologi, Vol. 79, No. 5, 1-10.

https://doi.org/10.11113/jt.v79.10004

Lai, J. C. H., Rahman, M. R., Hamdan, S., Liew, F. K., Rahman, M. M. and Hossen, M. F. (2014). Impact of Nanoclay on Physicomechanical and Thermal Analysis of Polyvinyl Alcohol/Fumed Silica/Clay Nanocomposites. Journal of Applied Polymer Science, Vol. 132, No. 15, 41843(1-7).

https://doi.org/10.1002/app.41843

Shanks, R. A. and Kong, I. (2013). General Purpose Elastomers: Structure, Chemistry, Physics and Performance, Springer-Verlag Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-20925-3_2

Khan, I., Usmani, M. A., Bhat, A. H., Rather, J. A., Hassan, S. I. and Muman. (2017). Recent Progress on Rubber Based Biocomposites: From Carbon Nanotubes to Ionic Liquids, Springer International Publishing AG.

https://doi.org/10.1007/978-3-319-46610-1_5

Itam, Z., Beddu, S., Mohd Kamal, N. L., Alam, M. A. and Ayash, U. I. (2016). The Feasibility of Palm Kernel Shell as a Replacement for Coarse Aggregate in Lightweight Concrete. International Conference on Advances in Renewable Energy and Technologies, Vol. 32, 1-5.

https://doi.org/10.1088/1755-1315/32/1/012040

Hidayu, A. R. and Muda, N. (2016). Preparation and Characterization of Impregnated Activated Carbon from Palm Kernel Shell and Coconut Shell for CO2 Capture. Procedia Engineering, Vol. 148, 106-113.

https://doi.org/10.1016/j.proeng.2016.06.463

King, P. J. (2013). Percolation effects in nanostructured thin films. Dublin: Trinity College Dublin.

Abdullah, S. S. and Yusup, S. (2010). Method for screening of Malaysian biomass based on aggregated matrix for hydrogen production through gasification. Journal of Applied Science, Vol. 10, 3301-3306.

https://doi.org/10.3923/jas.2010.3301.3306

Mphahlele, M. J., Maluleka, M. M., Rhyman, L., Ramasami, P. and Mampa, R. M. (2017). Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsusbstituted 2-Aminobenzamides. Molecules, Vol. 27, No. 83, 1-14.

https://doi.org/10.3390/molecules22010083

Ong, H. L., Toh, G. Y., Nik Adik, N. N. A. and Abdullah, M. M. A. B. (2016). Utilization of Modified Palm Kernel Shell for Biocomposites Production. Key Engineering Materials, Vol. 700, 60-69.

https://doi.org/10.4028/www.scientific.net/KEM.700.60

Alengaram, U. J., Jummat, Z. and Mahmud, H. (2008). Ductility Behavior of Reinforced Palm Kernel Shell Concrete Beams. European Journal of Scientific Research, Vol. 23, No. 3, 406-420.

Majewski, L. Sikora, J. W. (2018). Mechanical Properties of Polyethylene Filled with Treated Neuburg Siliceous Earth. Technical Transactions, Vol. 8, 59-72.

https://doi.org/10.4467/2353737XCT.18.115.8890

Malakani, M., Bazyar, B., Talaiepour, M., Hemmasi, A. H. and Ghasemi, I. (2015). Effect of Acetylation of Wood Flour and MAPP Content During Compounding on Physical Properties, Decay Resistance, Contact Angle and Morphology of Polypropylene/Wood Flour Composites. BioResources, Vol. 2, No. 2, 2113- 2129.

https://doi.org/10.15376/biores.10.2.2113-2129

Arib, R. M. N., Sapuan, S. M., Ahmad, M. M. H. M., Paridah M. T. and Khairul Zaman H. M. D. (2004). Mechanical Properties of Pineapple Leaf Fiber Reinforced Polypropylene Composites. Materials and Design, Vol. 27, 391-396.

https://doi.org/10.1016/j.matdes.2004.11.009

Acha, B. A., Marcovich N. E. and Reboredo, M. M. (2005). Physical and Mechanical Characterization of Jute Fabric Composites. Applied Polymer Science, Vol. 98, 639-650.

https://doi.org/10.1002/app.22083

Downloads

Published

2018-09-30

How to Cite

Lai, J. C. H., & Yusof, N. L. (2018). Physico-Mechanical, Morphological Properties of Polyvinyl Alcohol/Palm Kernel Shell/Coconut Kernel Shell Elastomeric Polymer Nanocomposites. Journal of Applied Science &Amp; Process Engineering, 5(2), 296–303. https://doi.org/10.33736/jaspe.951.2018