Landslide Susceptibility Mapping of Western Sarawak via Artificial Neural Network

Authors

  • Nur Hisyam Ramli Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia https://orcid.org/0009-0001-2379-5630
  • Siti Noor Linda Taib Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia
  • Norazzlina M. Sa'don Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia https://orcid.org/0000-0001-8567-823X
  • Dayangku Salma Awang Ismail Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia https://orcid.org/0009-0006-2707-1476
  • Raudhah Ahmadi Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia https://orcid.org/0000-0002-5383-4856
  • Imtiyaz Akbar Najar Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia https://orcid.org/0000-0002-7338-6771
  • Rosmina Ahmad Bustami UNIMAS Water Centre (UWC), Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia https://orcid.org/0000-0002-8438-8932
  • Tarmiji Masron Centre for Spatially Integrated Digital Humanities (CSIDH), Faculty of Social Sciences and Humanities, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia https://orcid.org/0009-0003-8390-2236
  • Nazeri Abdul Rahman Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia https://orcid.org/0000-0001-5606-3658

DOI:

https://doi.org/10.33736/jaspe.9495.2025

Keywords:

Landslide, Machine Learning, Sarawak, Spatial Data

Abstract

Landslides are the third most frequent form of natural disaster in Malaysia, following floods and storms. It can cause significant damage to anything in its path, depending on the size and velocity of its debris. Due to the danger that it poses, determining the susceptibility of an area to landslides is a crucial step in risk mitigation. Landslide occurrences are dependent on the numerous environmental variables, which can provide information on the level of susceptibility of other locations with similar variables. To quantify the significance of each variable to landslide occurrence, a supervised Machine Learning model – an Artificial Neural Network was developed for this study. Furthermore, landslide occurrences have been associated with the disturbance of natural slopes to accommodate development, which was the main reason behind the selection of Western Sarawak as the area of interest in this study. The model was developed to understand and make landslide susceptibility predictions based on aspect, curvature, elevation, lithology type, rainfall intensity, slope angle, soil type, and TWI. Evaluating the area under the curve score and recall for the model revealed that, based on the available inputs, the model performed well with a score of 1 and 0.99, respectively.

References

Parulian Pardede, E.J. (2023). Analisis Geoteknik ditinjau dari karakteristik kuat geser material longsoran, Syntax Idea, 5(9), 1554. doi: 10.46799/syntax-idea.v5i9.2595.

Akter, A., Noor, M. J. M. M., Goto, M., Khanam, S., Parvez, A. & Rasheduzzaman, M. (2019). Landslide disaster in Malaysia: An Overview, Int. J. Innov. Res. Dev., 8(6), 292–302. doi: 10.24940/ijird/2019/v8/i6/jun19058.

Rosly, M. H., Mohamad, H. M., Bolong, N., & Harith, N. S. H. (2022). An overview: relationship of geological condition and rainfall with landslide events at East Malaysia. Trends in Sciences, 19(8), 3464-3464. doi: 10.48048/tis.2022.3464.

Razavi-Termeh, S. V., Seo, M., Sadeghi-Niaraki, A., & Choi, S. M. (2023). Flash flood detection and susceptibility mapping in the Monsoon period by integration of optical and radar satellite imagery using an improvement of a sequential ensemble algorithm. Weather and Climate Extremes, 41, 100595. doi: 10.1016/j.wace.2023.100595

Tehrani, F. S., Calvello, M., Liu, Z., Zhang, L., & Lacasse, S. (2022). Machine learning and landslide studies: recent advances and applications. Natural Hazards, 114(2), 1197-1245. doi: 10.1007/s11069-022-05423-7.

Rudra, R. R., & Sarkar, S. K. (2023). Artificial neural network for flood susceptibility mapping in Bangladesh. Heliyon, 9(6), e16459. doi: 10.1016/j.heliyon.2023.e16459

Abidoye, L. K., Mahdi, F. M., Idris, M. O., Alabi, O. O., & Wahab, A. A. (2018). ANN-derived equation and ITS application in the prediction of dielectric properties of pure and impure CO2. Journal of Cleaner Production, 175, 123-132. doi: 10.1016/j.jclepro.2017.12.013

Lin, J. M., & Billa, L. (2021). Spatial prediction of flood-prone areas using geographically weighted regression. Environmental Advances, 6, 100118. doi: 10.1016/j.envadv.2021.100118

Jabatan Kerja Raya. (2025). Bengkel Pelan Induk Cerun Negara 2024 : Pelan Tindakan,” JKR. Accessed: May 22, 2025. [Online]. Available: https://www.jkr.gov.my/my/page/bengkel-pelan-induk-cerun-negara-2024-pelan-tindakan-2025-2030

Li, M., & Tian, H. (2025). Insights from optimized non-landslide sampling and SHAP explainability for landslide susceptibility prediction. Applied Sciences, 15(3), 1163. doi: 10.3390/app15031163.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of geophysics, 45(2), 1-33. doi: https://doi.org/10.1029/2005RG000183.

Zhou, Y., Wang, H., Yang, R., Xie, D., & Liu, J. (2022, August). Semantic segmentation algorithm of landslide based on remote sensing image and DEM. In 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI) (pp. 595-599). IEEE. doi: 10.1109/PRAI55851.2022.9904119.

Guo, Y., & Ma, C. (2023). Elucidating the role of soil hydraulic properties on aspect-dependent landslide initiation. Hydrology and Earth System Sciences, 27(8), 1667-1682. doi: 10.5194/hess-27-1667-2023.

Ahmed, I., Pan, N. D., Debnath, J., Bhowmik, M., & Bhattacharjee, S. (2024). Flood hazard zonation using GIS-based multi-parametric Analytical Hierarchy Process. Geosystems and Geoenvironment, 3(2), 100250. doi: 10.1016/j.geogeo.2023.100250.

Rudra, R. R., & Sarkar, S. K. (2023). Artificial neural network for flood susceptibility mapping in Bangladesh. Heliyon, 9(6), e16459. doi: 10.1016/j.heliyon.2023.e16459

FAO and IIASA. (2023). Harmonized World Soil Database version 2.0, FAO; International Institute for Applied Systems Analysis (IIASA);, Rome and Laxenburg. doi: 10.4060/cc3823en.

Sa’adi, Z., Shahid, S., Ismail, T., Chung, E. S., & Wang, X. J. (2019). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131(3), 263-277. doi: 10.1007/s00703-017-0564-3.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A. & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21. doi: 10.1038/sdata.2015.66.

Chen, S., Miao, Z., Wu, L., & He, Y. (2020). Application of an incomplete landslide inventory and one class classifier to earthquake-induced landslide susceptibility mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1649-1660. doi: 10.1109/JSTARS.2020.2985088

Singh, H., Huat, B. B., & Jamaludin, S. (2008). Slope assessment systems: A review and evaluation of current techniques used for cut slopes in the mountainous terrain of West Malaysia. Electronic Journal of Geotechnical Engineering, 13, 1-24.

QGIS Development Team. (2003). QGIS desktop 3.22 user guide. [Online]. Available: https://docs.qgis.org/3.22/pdf/en/QGIS-3.22-DesktopUserGuide-en.pdf

Iban, M. C., & Sekertekin, A. (2022). Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A case study of Adana and Mersin provinces, Turkey. Ecological Informatics, 69, 101647. doi: 10.1016/j.ecoinf.2022.101647

UMW, “Microsoft Excel Manual,” University of Mary, Washington. Accessed: Dec. 07, 2024. [Online]. Available: https://adminfinance.umw.edu/tess/files/2013/06/Excel-Manual1.pdf

Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G.,Graves, S., Heiberger, R., Krivitsky, P., Laboissiere, R., Maechler, M., Monette, G., Murdoch, D., Nilsson, H., Ogle, D., Ripley, B., Short, T., Venables, W., Walker, S., Winsemius, D., Zeileis, A. & Heiberger, R. (2024). Package ‘car’. Available: https://cran.r-project.org/web/packages/car/car.pdf

Mohammed, M. A. (2024). Effect of Using Numerical Data Scaling on Supervised Machine Learning Performance. Global Libyan Journal, 67, 1–21. doi: 10.37376/glj.vi67.5903.

Ul Haq, I., Gondal, I., Vamplew, P., & Brown, S. (2018, November). Categorical features transformation with compact one-hot encoder for fraud detection in distributed environment. In Australasian Conference on Data Mining (pp. 69-80). Singapore: Springer Singapore. doi: 10.1007/978-981-13-6661-1_6.

Fritsch, S., Guenther, F., & Guenther, M. F. (2019). Package ‘neuralnet’. Training of Neural Networks, 2, 30. https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf

Osman, M. S., Khairudin, K., Hassan, H., Sam, S. T., Nazeri, N. B. M., Mustapa, N. L. S., & Fitriyanti, M. (2024). Artificial Neural Network-driven Optimization of Fe3O4 Nanoparticles/PVDF Macrospheres in Fenton-like System for Methylene Blue Degradation. Journal of Advanced Research in Micro and Nano Engineering, 22(1), 68-84. doi: 10.37934/armne.22.1.6884.

Agarwal, M.& Agarwal, B.B. (2024). Predicting student academic performance using neural networks: Analyzing the impact of transfer functions, momentum and learning rate, Int. J. Exp. Res. Rev., 40, Special Issue, 56–72. doi: 10.52756/ijerr.2024.v40spl.005.

Bravo-López, E., Fernández Del Castillo, T., Sellers, C., & Delgado-García, J. (2023). Analysis of conditioning factors in cuenca, ecuador, for landslide susceptibility maps generation employing machine learning methods. Land, 12(6), 1135. doi: 10.3390/land12061135

Achmad, R. R., & Haris, M. (2023). Hyperparameter tuning deep learning for imbalanced data. Tepian, 4(2), 90-101. doi: 10.51967/tepian.v4i2.2216.

Aldiansyah, S., & Risna, R. (2023). Assessing potential habitat suitability of vulnerable endemic species: A case study of Diospyros celebica Bakh and Rhyticeros cassidix. In Forum Geografic, 22(2), 159-169. doi: 10.5775/fg.2023.2.3596.

R. Bivand, R. J. Hijmans, E. Pebesma, and M. D. Sumner. (2024). Package ‘terra, CRAN. Accessed: Feb. 01, 2024. [Online]. Available: https://rspatial.org/

Hakim, W. L., Rezaie, F., Nur, A. S., Panahi, M., Khosravi, K., Lee, C. W., & Lee, S. (2022). Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. Journal of environmental management, 305, 114367. doi: 10.1016/j.jenvman.2021.114367.

Hodson, T. O. (2022). Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions, 15(14), 5481-5487. doi: 10.5194/gmd-15-5481-2022.

Downloads

Published

2025-10-31

How to Cite

Ramli, N. H., Taib, S. N. L., M. Sa’don, N., Awang Ismail, D. S., Ahmadi, R., Akbar Najar, I., Ahmad Bustami, R., Masron, T. ., & Abdul Rahman, N. . (2025). Landslide Susceptibility Mapping of Western Sarawak via Artificial Neural Network. Journal of Applied Science &Amp; Process Engineering, 12(2), 206–218. https://doi.org/10.33736/jaspe.9495.2025