Development of Palm Kernel/Nanoparticles Surfactant and Study of Adsorption Behavior, Interfacial Tension Reduction and Wettability Alteration

Authors

  • Umar Hassan Department of Pure & Industrial Chemistry, Bayero University Kano, 3011 Kano, Nigeria
  • Mohammed Falalu Hamza Department of Pure & Industrial Chemistry, Bayero University Kano, 3011 Kano, Nigeria & School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Hassan Soleimani Department of Geosciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
  • Sabiha Hanim Saleh School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Saifullahi Shehu Imam Department of Pure & Industrial Chemistry, Bayero University Kano, 3011 Kano, Nigeria
  • Yarima Mudassir Hassan Department of Computer Science, Azman University Kano, 713140 Kano, Nigeria

DOI:

https://doi.org/10.33736/jaspe.9468.2025

Keywords:

Enhanced oil recovery, Surfactant, Nanoparticles, Adsorption

Abstract

Nanofluid is a promising technique for crude oil extraction in reservoirs by changing the interfacial tension (IFT) and wettability. This study aims to evaluate the capability of the nanofluid comprising palm kernel bio-surfactant (PS) and SiO2 nanoparticles (NPs). The PS incorporated with the SiO2 NPs revealed significant adsorption at various operation conditions. The optimal adsorption parameters of the palm kernel surfactant nanoparticles (PSNP) were found to be 120 minutes contact time, 0.2 %wt SiO2 NPs dosage, 40 oC temperature, pH 9, and 3 % PS concentration. The adsorption isotherms data fitted with the Langmuir isotherm (R-squared value of 0.9). Furthermore, the nanofluid has demonstrated appreciable foam stability due to the good foam morphologies observed. It was found that PSNP nanofluid decreased the IFT of the oil/brine system from 6.22 mN/m to a low level of 1 x 10-2 mN/m. Additionally, the nanofluid changed the wettability to a 10% water-wet state. Consequently, PSNP biosurfactant foam can be utilized in foam flooding enhanced oil recovery (EOR) technique.

References

Hamza, M.F., Sinnathambi C.M., Zulkifli, M. Aljunid Merican, Soleimani, H.,& Karl D. Stephen, (2018). Effect of SiO2 on the foamability, thermal stability and interfacial tension of a novel nano-fluid hybrid surfactant. International Journal of Advanced and Applied Sciences, 5(1), 113-122. https://doi.org/10.21833/ijaas.2018.01.015

Hamza,M.F.,Hassan S.,H., Zulkifi, M.A., MSinnathambi,C.M.,Karl D.S., & Abdelazeem A.A. (2020). Nano fluid viscosity screening and study of in situ foam pressure buildup at high temperature high pressure conditions. Journal of Petroleum Exploration and Production Technology, 10, 1115–1126 https://doi.org/10.1007/s13202-019-00753-

Alireza, B. & Mojdeh Delshad. (2023). Strategy for Optimum Chemical Enhanced Oil Recovery Field Operation. Journal Resource Recovery, 1, 1001. https://doi.org/10.52547/jrr.2208.1001

Hamza, M.F., Sinnathambi, C.M., & Merican, Z.M.A. (2017). Recent advancement of hybrid materials used in chemical enhanced oil recovery (CEOR): A review. In IOP Conference Series: Materials Science and Engineering 206(1), 012007. https://iopscience.iop.org/article/10.1088/1757-899X/206/1/012007/

Al-Anssari, S., Ali, M., Alajmi, M., Akhondzadeh, H., Khaksar Manshad, A., Kalantariasl, A., & Keshavarz, A. (2021). Synergistic effect of nanoparticles and polymers on the rheological properties of injection fluids: implications for enhanced oil recovery. Energy & Fuels, 35(7), 6125-6135. https://doi.org/10.1021/acs.energyfuels.1c00105

Kamal, M. S., Hussein, I. A., & Sultan, A. S. (2017). Review on surfactant flooding: phase behavior, retention, IFT, and field applications. Energy & fuels, 31(8), 7701-7720. https://doi/abs/10.1021/acs.energyfuels.7b00353

Yekeen, N., Padmanabhan, E., Idris, A. K., & Ibad, S. M. (2019). Surfactant adsorption behaviors onto shale from Malaysian formations: Influence of silicon dioxide nanoparticles, surfactant type, temperature, salinity and shale lithology. Journal of Petroleum Science and Engineering, 179, 841-854. https://doi.org/10.1016/j.petrol.2019.05.041

Muhammad, U. S., & Hamza, M. F. (2022). Fenugreek surfactant: Extraction, Synthesis and Evaluation of Foam Properties for Application in Enhanced Oil Recovery. Applied Science and Technology Express, 2022, 1-9. https://www.htpub.org/article/Applied-Science-And-Technology-Express/vol/2022/issue/0/ articleid/1129

Naksuk, A., Sabatini, D. A., & Tongcumpou, C. (2009). Microemulsion-based palm kernel oil extraction using mixed surfactant solutions. Industrial Crops and Products, 30(2), 194-198. https://doi.org/10.1016/j.indcrop.2009.03.008

Davies, R. M. (2012). Physical and mechanical properties of palm fruit, kernel and nut. Journal of Agricultural Technology, 8(7), 2147-2156. http://www.ijat-aatsea.com

Dollah, S., Abdulkarim, S.M, Ahmad, S.H., Khoramnia, A., Mohd, G.H. (2016). Physico-chemical properties of Moringa oleifera seed oil enzymatically interest with palm stearin and palm kernel oil and its potential application in food. Journal Science Food Agric. 96(10), 3321-3333. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0010

Jekayinfa, S. O., & Bamgboye, A. I. (2007). Development of equations for estimating energy requirements in palm-kernel oil processing operations. Journal of food engineering, 79(1), 322-329. Doi:. 10.1016/j.jfoodeng.2006.01.045

Liu, Z., Hedayati, P., Sudhölter, E. J., Haaring, R., Shaik, A. R., & Kumar, N. (2020). Adsorption behavior of anionic surfactants to silica surfaces in the presence of calcium ion and polystyrene sulfonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602, 125074. https://doi.org/10.1016/j.colsurfa.2020.125074

Hashem, A., Aniagor, C. O., Farag, S., Fikry, M., Aly, A. A., & Amr, A. (2024). Evaluation of the adsorption capacity of surfactant-modified biomass in an aqueous acid blue 193 system. Waste Management Bulletin, 2(1), 172-183. https://doi.org/10.1016/j.wmb.2024.01.004

Staniscia, F., Guzman, H. V., & Kanduč, M. (2022). Tuning contact angles of aqueous droplets on hydrophilic and hydrophobic surfaces by surfactants. The Journal of Physical Chemistry B, 126(17), 3374-3384. https://doi.org/10.1021/acs.jpcb.2c01599

Rattanaudom, P., Shiau, B. J., Suriyapraphadilok, U., & Charoensaeng, A. (2021). Effect of pH on silica nanoparticle-stabilized foam for enhanced oil recovery using carboxylate-based extended surfactants. Journal of Petroleum Science and Engineering, 196, 107729. https://doi.org/10.1016/j.petrol.2020.107729

Manyangadze, M., Chikuruwo, N. H. M., Chakra, C. S., Narsaiah, T. B., Radhakumari, M., & Danha, G. (2020). Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South African Journal of Chemical Engineering, 31(1), 25-32. https://doi.org/10.1021/acs.jpcb.2c01599

Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013

Farhadi, H., Riahi, S., Ayatollahi, S., & Ahmadi, H. (2016). Experimental study of nanoparticle-surfactant-stabilized CO2 foam: Stability and mobility control. Chemical Engineering Research and Design, 111, 449-460. https://doi.org/10.1016/j.cherd.2016.05.024

AlYousef, Z., Almobarky, M., & Schechter, D. (2017). Enhancing the stability of foam by the use of nanoparticles. Energy & Fuels, 31(10), 10620-10627. https://doi.org/10.1021/acs.energyfuels.7b01697

Rahman, A., Torabi, F., & Shirif, E. (2023). Surfactant and nanoparticle synergy: towards improved foam stability. Petroleum, 9(2), 255-264. https://doi.org/10.1016/j.petlm.2023.02.002

Mohd, T. A. T., Shukor, M. A. A., Ghazali, N. A., Alias, N., Yahya, E., Azizi, A., ... & Ramlee, N. A. (2014). Relationship between foamability and nanoparticle concentration of carbon dioxide (CO2) foam for enhanced oil recovery (EOR). Applied Mechanics and Materials, 548, 67-71. https://doi.org/10.4028/www.scientific.net/AMM.548-549.67

Youssif, M. I., Shoukry, A. E., Sharma, K. V., Goual, L., & Piri, M. (2024). The Effects of Brine Salinity and Surfactant Concentration on Foam Performance in Fractured Media. Energy & Fuels, 38(20), 19494-19508. https://doi.org/10.1021/acs.energyfuels.4c02706

Rudyk, S., Al-Khamisi, S., & Al-Wahaibi, Y. (2021). Effects of water salinity on the foam dynamics for EOR application. Journal of Petroleum Exploration and Production Technology, 11(8), 3321-3332. https://doi.org/10.1007/s13202-021-01246-7

Downloads

Published

2025-04-30

How to Cite

Hassan, U. ., HAMZA, M. F., Soleimani, H., Hanim Saleh, S. ., Shehu Imam, S., & Mudassir Hassan, Y. (2025). Development of Palm Kernel/Nanoparticles Surfactant and Study of Adsorption Behavior, Interfacial Tension Reduction and Wettability Alteration . Journal of Applied Science &Amp; Process Engineering, 12(1), 21–31. https://doi.org/10.33736/jaspe.9468.2025