Synthesis, Characterizations and Chemometric Analysis Approach of Nitrile Functionalized Asymmetrical Dinuclear Silver(I) Di-N¬-Heterocyclic Carbene Complexes

Authors

  • Muhammad Zulhelmi Nazri INNOVATION CENTRE IN AGRITECHNOLOGY FOR ADVANCED BIOPROCESSING, UNIVERSITI TEKNOLOGI MALAYSIA
  • Mohd Rizal Razali School of Chemical Sciences, Universiti Sains Malaysia 11800 Minden, Penang, Malaysia
  • Sunusi Yahya Hussaini Department of Chemistry, Kano University of Science and Technology Wudil, Nigeria
  • Norazah Basar Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia 81310 Skudai, Johor Bahru, Johor, Malaysia & Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia (Pagoh Campus), Eduhub Tinggi Pagoh 84600 Pagoh, Muar, Johor, Malaysia

DOI:

https://doi.org/10.33736/jaspe.7677.2024

Keywords:

N-heterocyclic carbene, Silver(I) complexes, Bis-benzimidazolium salts, Nitrile-functionalization, Principal component analysis

Abstract

A series of novel asymmetrical bis-benzimidazolium salts were synthesized via a two-step alkylation process, yielding the benzimidazolium salts of N,N'-(ethane/propane/butane-1,2/3/4-diyl)-1-benzylbenzimidazolium-1'-(n-benzonitrile)benzimidazolium dibromide (n = 2,3,4) (1Br9Br). These salts served as carbene precursors for the subsequent formation of nitrile-functionalized asymmetrical silver(I) di-NHC complexes (Ag1Ag9) (NHC = N-heterocyclic carbene) through an in-situ deprotonation method using Ag2O. Comprehensive characterization of the bis-benzimidazolium salts and their corresponding dinuclear silver(I) di-NHC complexes was performed using melting point determination, CHN elemental analyses, FTIR, and 1H- and 13C-NMR spectroscopy. The successful complexation of nitrile-functionalized NHC ligands with silver(I) ions was evidenced by the disappearance of the acidic-carbene proton peak (δ 9.69 – 10.23 ppm) in the 1H-NMR spectra of the complexes. Furthermore, the formation of Ag-Ccarbene bonds was confirmed by the appearance of characteristic peaks in the 13C-NMR spectra of Ag1Ag9 (δ 170.89 – 195.90 ppm). To elucidate structure-property relationships, the Principal Component Analysis (PCA) was applied to the NMR spectroscopic data. The PCA of the 1H-NMR data revealed distinct clustering of bis-benzimidazolium salts and their respective silver(I) di-NHC complexes, with the first two principal components accounting for 71.40% of the total variance. Similarly, the PCA of the 13C-NMR data explained 72.08% of the total variance through the first two principal components. These results demonstrate the efficacy of PCA in differentiating and classifying the compounds based on their structural features and functional groups. Moreover, this study highlights the synergistic application of advanced spectroscopic techniques and chemometric analysis in inorganic synthesis chemistry subject and the insights gained from this approach contribute to a deeper understanding of the structural properties and potential applications of these novel NHC complexes, paving the way for future developments in organometallic chemistry and catalysis.

References

Jalal, M., Hammouti, B., Touzani, R., Aouniti, A., & Ozdemir, I. (2020). Metal-NHC Heterocycle Complexes in Catalysis and Biological Applications: Systematic Review. Materials Today: Proceedings, 31, S122-S129. https://doi.org/10.1016/j.matpr.2020.06.398

Li, J., He, D., Lin, Z., Wu, W., & Jiang, H. (2021). Recent Advances in NHC–Palladium Catalysis for Alkyne Chemistry: Versatile Synthesis and Applications. Organic Chemistry Frontiers, 8(13), 3502-3524. https://doi.org/10.1039/D1QO00111F

Wang, Z., Tzouras, N. V., Nolan, S. P., & Bi, X. (2021). Silver N-Heterocyclic Carbenes: Emerging Powerful Catalysts. Trends in Chemistry, 3(8), 674-685. https://doi.org/10.1016/j.trechm.2021.04.006

Ronga, L., Varcamonti, M., & Tesauro, D. (2023). Structure–Activity Relationships in NHC–Silver Complexes as Antimicrobial Agents. Molecules, 28(11), 4435. https://doi.org/10.3390/molecules28114435

Scattolin, T., & Nolan, S. P. (2020). Synthetic Routes to Late Transition Metal–NHC Complexes. Trends in Chemistry, 2(8), 721-736. https://doi.org/10.1016/j.trechm.2020.06.001

Nayak, S., & Gaonkar, S. L. (2021). Coinage Metal N‐Heterocyclic Carbene Complexes: Recent Synthetic Strategies and Medicinal Applications. ChemMedChem, 16(9), 1360-1390. https://doi.org/10.1002/cmdc.202000836

Şahin-Bölükbaşı, S., & Şahin, N. (2019). Novel Silver-NHC Complexes: Synthesis and Anticancer Properties. Journal of Organometallic Chemistry, 891, 78-84. https://doi.org/10.1016/j.jorganchem.2019.04.018

Romain, C., Bellemin-Laponnaz, S., & Dagorne, S. (2020). Recent Progress on NHC-Stabilized Early Transition Metal (Group 3–7) Complexes: Synthesis and Applications. Coordination Chemistry Reviews, 422, 213411. https://doi.org/10.1016/j.ccr.2020.213411

Werner, L., Horrer, G., Philipp, M., Lubitz, K., Kuntze‐Fechner, M. W., & Radius, U. (2021). A General Synthetic Route to NHC‐Phosphinidenes: NHC‐Mediated Dehydrogenation of Primary Phosphines. Zeitschrift für anorganische und allgemeine Chemie, 647(8), 881-895. https://doi.org/10.1002/zaac.202000405

Aktaş, A., Yakalı, G., Demir, Y., Gülçin, İ., Aygün, M., & Gök, Y. (2022). The Palladium-Based Complexes bearing 1,3-dibenzylbenzimidazolium with Morpholine, Triphenylphosphine, and Pyridine Derivate Ligands: Synthesis, Characterization, Structure and Enzyme Inhibitions. Heliyon, 8(9). https://doi.org/10.1016/j.heliyon.2022.e10625

Giarrusso, C. P., Zeil, D. V., & Blair, V. L. (2023). Catalytic exploration of NHC–Ag (i) HMDS Complexes for the Hydroboration and Hydrosilylation of Carbonyl Compounds. Dalton Transactions, 52(23), 7828-7835. https://doi.org/10.1039/D3DT01042B

Abdurrahman, N., Sasidharan, S., Mudzakir, A., Yoshinari, N., & Razali, M. R. (2023). A Symmetrical Tetra N-Heterocyclic Carbene Binuclear Silver(I) Complex: Synthesis, Characterization and Anticancer Study. Journal of Coordination Chemistry, 76(16-24), 1921-1940. https://doi.org/10.1080/00958972.2023.2289001

Praveen, P. A., & Babu, R. R. (2019). Evaluation of Nonlinear Optical Properties from Molecular Descriptors of Benzimidazole Metal Complexes by Principal Component Analysis. Journal of Molecular Graphics and Modelling, 93, 107447. https://doi.org/10.1016/j.jmgm.2019.107447

Arora, T., Devi, J., Dubey, A., Tufail, A., & Kumar, B. (2023). Spectroscopic Studies, Antimicrobial Activity, and Computational Investigations of Hydrazone Ligands Endowed Metal Chelates. Applied Organometallic Chemistry, 37(9), e7209. https://doi.org/10.1002/aoc.7209

Timoshnikov, V. A., Selyutina, O. Y., Polyakov, N. E., Didichenko, V., & Kontoghiorghes, G. J. (2022). Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-oxidant Activity and Applications in Medicine. International Journal of Molecular Sciences, 23(3), 1247. https://doi.org/10.3390/ijms23031247

Abd El-Lateef, H. M., Khalaf, M. M., Kandeel, M., & Abdou, A. (2023). Synthesis, Characterization, DFT, Biological and Molecular Docking of Mixed Ligand Complexes of Ni(II), Co(II), and Cu(II) based on Ciprofloxacin and 2-(1H-benzimidazol-2-yl) phenol. Inorganic Chemistry Communications, 155, 111087. https://doi.org/10.1016/j.inoche.2023.111087

Fatima, T., Haque, R. A., Ahmad, A., Hassan, L. E. A., Ahamed, M. B. K., Majid, A. A., & Razali, M. R. (2020). Tri N-Heterocyclic Carbene Trinuclear Silver(I) Complexes: Synthesis and In-vitro Cytotoxicity Studies. Journal of Molecular Structure, 1222, 128890. https://doi.org/10.1016/j.molstruc.2020.128890

Lumivero (2024). XLSTAT Statistical and Data Analysis Solution. https://www.xlstat.com/en.

Nazri, M. Z., Zaini, N. S. M., Kamaruddin, N. N., Rameezal, R. N., Musa, N. F., Razali, M. R. & Basar, N. (2024). Synthesis, Characterizations and Multivariate Data Analysis of Non- and Nitrile-Functionalized Silver(I) and Palladium(II) N-Heterocyclic Carbene Complexes. Scientific Research Journal, 21(2), 89-117. https://doi.org/10.24191/srj.v21i2.26553

Sani, M. S. A., Ismail, A. M., Azid, A., Samsudin, M. S., & Yuswan, M. H. (2024). Incorporation of Partial Least Squares-Discriminant Analysis with Ultra-High-Performance Liquid Chromatography Diode-Array Detector for Authentication of Skin Gelatine Sources. Halalsphere, 4(1), 1-13. https://doi.org/10.31436/hs.v4i1.83

Nazri, M. Z., Cilwyn, B., Huda, K., Sreenivasan, S., & Razali, M. R. (2023). Synthesis, Structural and Anticancer Studies of Asymmetrical Dinuclear Silver (I) Di-N-heterocyclic Carbene Complexes. Malaysian Journal of Chemistry, 25(4), 207-221. https://doi.org/10.55373/mjchem.v25i4.207

Hussaini, S. Y., Haque, R. A., Haziz, U. F., Amirul, A. A., & Razali, M. R. (2021). Dinuclear Silver(I)- and Gold(I)-N-Heterocyclic Carbene Complexes of N-alkyl Substituted Bis-Benzimidazol-2-ylidenes with Aliphatic Spacer: Synthesis, Characterizations and Antibacterial Studies. Journal of Molecular Structure, 1246, 131187. https://doi.org/10.1016/j.molstruc.2021.131187

Nadeem, R. Y., Yaqoob, M., Yam, W., Haque, R. A., & Iqbal, M. A. (2022). Synthesis, characterization and biological evaluation of Bis-benzimidazolium salts and their silver(I)-N-heterocyclic carbene complexes. Medicinal Chemistry Research, 31(10), 1783-1791.https://doi.org/10.1007/s00044-022-02942-7

Hussaini, S. Y., Haque, R. A., Li, J. H., Zhan, S. Z., Tan, K. W., & Razali, M. R. (2019). Coinage Metal Complexes of N‐Heterocyclic Carbene Bearing Nitrile Functionalization: Synthesis and Photophysical Properties. Applied Organometallic Chemistry, 33(6), e4927. https://doi.org/10.1002/aoc.4927

Yeap, C. W., Haque, R. A., Yam, W. S., & Razali, M. R. (2019). The first Mesomorphic Benzimidazolium-based Silver(I)-N-Heterocyclic Dicarbene Complexes: Synthesis, Characterization and Phase Properties. Journal of Molecular Liquids, 277, 341-348. https://doi.org/10.1016/j.molliq.2018.12.075

Altuntaş, Ü., Güzel, İ., & Özçelik, B. (2023). Phenolic Constituents, Antioxidant and Antimicrobial Activity and Clustering Analysis of Propolis Samples based on PCA from Different Regions of Anatolia. Molecules, 28(3), 1121. https://doi.org/10.3390/molecules28031121

Jolliffe, I. T., & Cadima, J. (2016). Principal Component Analysis: A Review and Recent Developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202

Bro, R., & Smilde, A. K. (2014). Principal component analysis. Analytical methods, 6(9), 2812-2831. https://doi.org/10.1039/C3AY41907J

Ibrahim, R. M., Eltanany, B. M., Pont, L., Benavente, F., ElBanna, S. A., & Otify, A. M. (2023). Unveiling the Functional Components and Antivirulence Activity of Mustard Leaves using an LC-MS/MS, Molecular Networking, and Multivariate Data Analysis Integrated Approach. Food Research International, 168, 112742. https://doi.org/10.1016/j.foodres.2023.112742

Wolczanski, P. T. (2024). Elemental Aspects of Transition Metals Pertinent to Organometallic Chemistry: Properties, Periodicity, Curiosities, and Related Main Group Issues. Organometallics, 43(8), 787-801. https://doi.org/10.1021/acs.organomet.3c00529

Ondar, E. E., Polynski, M. V., & Ananikov, V. P. (2023). Predicting 195Pt NMR Chemical Shifts in Water‐Soluble Inorganic/Organometallic Complexes with a Fast and Simple Protocol Combining Semiempirical Modeling and Machine Learning. ChemPhysChem, 24(11), e202200940. https://doi.org/10.1002/cphc.202200940

Downloads

Published

2024-10-31

How to Cite

Nazri, M. Z., Mohd Rizal Razali, Sunusi Yahya Hussaini, & Norazah Basar. (2024). Synthesis, Characterizations and Chemometric Analysis Approach of Nitrile Functionalized Asymmetrical Dinuclear Silver(I) Di-N¬-Heterocyclic Carbene Complexes. Journal of Applied Science &Amp; Process Engineering, 11(2), 118–137. https://doi.org/10.33736/jaspe.7677.2024