Viscosity for Some Organic Binary Liquid Systems: A Theoretical Study on Correlative Modeling
Abstract
This study investigates the performance of different groups of binary liquid mixtures for various aliphatic hydrocarbons of both polar and non-polar types. This highlights the importance of selecting appropriate models based on the specific composition of the mixture for accurate predictions in industrial processes and product optimization. For this purpose, well-known equations of Grunberg-Nissan, Hind, Heric, Ausländer, McAllister 3- body and McAllister 4- body are utilized and tested for the viscosity data of different binary liquid systems, collected from previous research. The systems consist of various aliphatic alkanes, cycloalkanes, and alkanols. They are classified into four groups: Group A (Aliphatic Alkane + Alkane), Group B (Aliphatic Alkane + Cycloalkane), Group C (Aliphatic Alkane + Alkanol) and Group D (Aliphatic Cycloalkane + Alkanol). In order to measure the fitting capabilities for every group of systems, Standard Percentage Deviations (SPD) as well as temperature Average Standard Percentage Deviations (ASPD) for all of the systems are estimated. For both dynamic and kinematic viscosity correlations, among four categories, the best results are found for Group A (Aliphatic Alkanes + Aliphatic Alkanes), followed by Group B (Aliphatic Alkanes + Cycloalkanes), with the poorest results for Group C (Aliphatic Alkanes + Alkanols). In addition, with the increment of the chain length of the systems, a linear change in deviation is also observed.
References
Tamura, M. and Kurata, M. (1952). On the Viscosity of Binary Mixture of Liquids, Bull. Chem. Soc. Jpn., 25, 32–38. https://api.semanticscholar.org/CorpusID:98423982
Krishnan, M. R. V. and Laddha, G. S. (1968). Viscosities of Binary Liquid Mixtures. Prediction from Y-X Data, Ind. Eng. Chem. Fundam., 7, 324–327. https://api.semanticscholar.org/CorpusID:97315278
Soliman, K. and Marschall, E. (1990). Viscosity of selected binary, ternary, and quaternary liquid mixtures, J. Chem. Eng. Data, 35, 375–381. https://api.semanticscholar.org/CorpusID:94300148
Qunfang, L. and Yu-Chun, H. (1999). Correlation of viscosity of binary liquid mixtures, Fluid Phase Equilib., 154(1), 153–163. https://doi.org/10.1016/S0378-3812(98)00415-4
Mehrotra, A. K., Monnery, W. D. and Svrcek, W. Y. (1996). A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures, Fluid Phase Equilib., 117(1–2), 344–355. https://doi.org/10.1016/0378-3812(95)02971-0
Monnery, W. D., Svrcek, W. Y. and Mehrotra, A. K. (1995). Viscosity: A Critical Review of Practical Predictive and Correlative Methods, Can. J. Chem. Eng., 73, 3–40. https://doi.org/10.1002/cjce.5450730103
Reid, R. C., Prausnitz, J. M. and Polimg, B. E. (1987). The properties of gases & liquids: 4th Edition, McGraw-Hill Book Company, New York, NY. ISBN 0-07-051799-1
Chevalier, J. L., Petrino, P. and Bonhomme, Y. G. (1988). Estimation method for the kinematic viscosity of a liquid-phase mixture, Chem. Eng. Sci., 43(6), 1303–1309. https://doi.org/10.1016/0009-2509(88)85104-2
Bonhomme, Y. G., Petrino, P. and Chevalier, J. L. (1994). UNIFAC—VISCO group contribution method for predicting kinematic viscosity: extension and temperature dependence, Chem. Eng. Sci., 49(11), 1799–1806. https://doi.org/10.1016/0009-2509(94)80065-0
Kijevčanin, M. L. J., Kostić, V. Z., Radović, I. R., Djordjević, B. D. and Šerbanović, S. P. (2008). Viscosity of binary non-electrolyte liquid mixtures: Prediction and correlation, Chem. Ind. Chem. Eng. Q., 14(4), 223–226. https://doi.org/10.2298/CICEQ0804223K
Rocky, M. M. H. and Akhtar, S. (2020). Correlations and Predictions for Viscosity of Binary Liquid Systems: New UNIFAC-VISCO Interaction Parameters for O, N, and S Containing Organic Liquids, Ind. Eng. Chem. Res., 59(16), 8004–8017. https://doi.org/10.1021/acs.iecr.0c00335
Zhang, J., Moosavi, M., Rostami, A. A. and Vargas, F. M. (2018). Viscosity modeling of water + alkanediols mixtures, J. Mol. Liq., 249, 326–333. https://doi.org/10.1016/j.molliq.2017.11.005
Billah, M. M., Rocky, M. M. H., Hossen, I., Hossain, I., Hossain, M. N. and Akhtar, S. (2018). Densities, viscosities, and refractive indices for the binary mixtures of tri-n-butyl phosphate (TBP) with toluene and ethylbenzene between (303.15 and 323.15) K, J. Mol. Liq., 265, 611–620. https://doi.org/10.1016/j.molliq.2018.05.126
Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc., 86(2), 127–130. https://doi.org/10.1021/ja01056a002
Baylaucq, A., Daugé, P. and Boned, C. (1997). Viscosity and density of the ternary mixture heptane+methylcyclohexane+1-methylnaphthalene, Int. J. Thermophys., 18(5), 1089–1107. https://doi.org/10.1007/BF02575251
Focke, W. W. and Du Plessis, B. (2004). Correlating Multicomponent Mixture Properties with Homogeneous Rational Functions, Ind. Eng. Chem. Res., 43, 8369–8377. https://api.semanticscholar.org/CorpusID:95645628
Focke, W. W. (2009). Weighted-power-mean mixture model for the Gibbs energy of fluid mixtures. Industrial & Engineering Chemistry Research, 48(11), 5537-5541. https://doi.org/10.1021/ie900083h
Bajić, D. M., Šerbanović, S. P., Živković, E. M., Jovanović, J. and Kijevčanin, M. L. (2014). Prediction and correlation of viscosity of binary mixtures of ionic liquids with organic solvents, J. Mol. Liq., 197, 1–6. https://doi.org/10.1016/j.molliq.2014.04.005
Kehiaian, H. V. (1985). Thermodynamics of binary liquid organic mixtures, Pure Appl. Chem., 57(1), 15–30. https://doi.org/10.1351/pac198557010015
Zafarani-Moattar, M. T. and Tohidifar, N. (2013). Effect of temperature on volumetric and transport properties of ternary poly ethylene glycol di-methyl ether 2000+poly ethylene glycol 400+water and the corresponding binary aqueous solutions: Measurement and correlation, Fluid Phase Equilib., 343, 43–57. https://doi.org/10.1016/j.fluid.2013.01.009
Knežević-Stevanović, A. B., Babić, G. M., Kijevčanin, M. L., Šerbanović, S. P. and Grozdanić, D. K. (2012). Correlation of the liquid mixture viscosities, J. Serbian Chem. Soc., 77(8), 1083–1089. doi: 10.2298/JSC120127038K.
Sinha, A. and Roy, M. N. (2006). Densities , Viscosities , and Sound Speeds of Some Acetate Salts in Binary Mixtures, J. Chem. Eng. Data, 51(4), 1415–1423. https://doi.org/10.1021/je060113j
Tian, Q. and Liu, H. (2007). Densities and viscosities of binary mixtures of tributyl phosphate with hexane and dodecane from (298.15 to 328.15) K, J. Chem. Eng. Data, 52(3), 892–897. https://doi.org/10.1021/je060491o
González, B., Calvar, N., Gómez, E. and Domínguez, Á. (2007). Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K, J. Chem. Thermodyn., 39(12), 1578–1588. https://doi.org/10.1016/j.jct.2007.05.004
Qiao, Y., Di, Z., Ma, Y., Ma, P. and Xia, S. (2010). Viscosities of pure water, acetic acid + water, and p-xylene + acetic acid + water at different temperature and pressure, Chinese J. Chem. Eng., 18(3), 446–454. https://doi.org/10.1016/S1004-9541(10)60242-X
Jouyban, A., Khoubnasabjafari, M., Vaez-Gharamaleki, Z., Fekari, Z. and Acree, W. E. (2005). Calculation of the viscosity of binary liquids at various temperatures using Jouyban-Acree model, Chem. Pharm. Bull., 53(5), 519–523. https://doi.org/10.1248/cpb.53.519
Ramachandran, D., Devi, N. G. and Srinivasa Rao, N. V. N. B. (2018). Correlative and predictive models of viscosity study on Propiophenone with isomeric xylenes binary mixtures at T=(303.15 to 318.15) K, Korean J. Chem. Eng., 35(9), 1919–1931. https://doi.org/10.1007/s11814-018-0104-y
Grunberg, L. and Nissan, A. H. (1949). Mixture law for viscosity, Nature, 164(4175), 799–800. https://doi.org/10.1038/164799b0
Hind, R. K., McLaughlin, E. and Ubbelohde, A. R. (1960). Structure and viscosity of liquids viscosity-temperature relationships of pyrrole and pyrrolidine, Trans. Faraday Soc., 56, 331–334. https://doi.org/10.1039/TF9605600331
Heric, E. L. (1966). On the Viscosity of Ternary Mixtures, J. Chem. Eng. Data, 11(1), 66–68. https://doi.org/10.1021/je60028a019
Ausländer, G. (1964). The Properties of Mixtures: Part I., Br. Chem. Eng., 9, 618–619.
McAllister, R. A. (1960). The viscosity of liquid mixtures, AIChE J., 6(3), 427–431. https://doi.org/10.1002/aic.690060316
Dey, R., Harshavardhan, A. and Verma, S. (2015). Viscometric investigation of binary, ternary and quaternary liquid mixtures: Comparative evaluation of correlative and predictive models, J. Mol. Liq., 211, 686–694. https://doi.org/10.1016/j.molliq.2015.07.042.
Dikio, E. D., Vilakazi, G. and Ngoy, P. (2013). Density, dynamic viscosity and derived properties of binary mixtures of m-xylene, o-xylene, and p-xylene, with pyridine at T = 293.15, 303.15, 313.15 and 323.15 K, J. Mol. Liq., 177, 190–197. https://doi.org/10.1016/j.molliq.2012.10.021
Majstorović, D. M., Živković, E. M. and Kijevčanin, M. L. (2017). Volumetric and viscometric study and modelling of binary systems of diethyl tartrate and alcohols, J. Mol. Liq., 248, 219–226. https://doi.org/10.1016/j.molliq.2017.10.067
Lambert, R. J. W., Mytilinaios, I., Maitland, L. and Brown, A. M. (2012). Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel, Comput. Methods Programs Biomed., 107(2), 155–163. https://doi.org/10.1016/j.cmpb.2011.05.009
Walsh, S. and Diamond, D. (1995). Non-linear curve fitting using microsoft excel solver, Talanta, 42(4), 561–572. https://doi.org/10.1016/0039-9140(95)01446-I
Dasgupta, P. K. (2008). Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays, J. Chromatogr. A, 1213(1), 50–55. https://doi.org/10.1016/j.chroma.2008.08.108
Hasan, M., Shirude, D. F., Hiray, A. P., Sawant, A. B. and U. B. Kadam, U. B. (2007). Densities, viscosities and ultrasonic velocities of binary mixtures of methylbenzene with hexan-2-ol, heptan-2-ol and octan-2-ol at T = 298.15 and 308.15 K, Fluid Phase Equilib., 252(1–2), 88–95. https://doi.org/10.1016/j.fluid.2007.01.001
Hasan, M., Shirude, D. F., Hiray, A. P., Sawant, A. B. and U. B. Kadam, U. B. (2006). Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and 313.15) K, J. Chem. Eng. Data, 51(5), 1922–1926. https://doi.org/10.1021/je0602519
Shan, Z. and Asfour, A. F. A. (1999). Viscosities and densities of nine binary 1-alkanol systems at 293.15 K and 298.15 K, J. Chem. Eng. Data, 44(1), 118–123. https://doi.org/10.1021/je980177x
Matos, J. S., Trenzado, J. L., Caro, M. N., Romano, E. and Pérez E. (1994).Volumetric study of (an aliphatic methyl ester + heptane or nonane) at the temperature 298.15 K, J. Chem. Thermodyn., 26(8), 857–862. https://doi.org/10.1006/jcht.1994.1102
Rathnam, M. V., Mohite, S. and Kumar, M. S. (2009). Thermophysical properties of isoamyl acetate or methyl benzoate + hydrocarbon binary mixtures, at (303.15 and 313.15) K, J. Chem. Eng. Data, 54(2), 305–309. https://doi.org/10.1021/je800325d
Aucejo, A., Burguet, M. C., Munoz, R. and Marques, J. L. (1995). Densities, viscosities, and refractive indices of the binary liquid systems n-alkanes + isomers of hexane at 298.15 K, J. Chem. Eng. Data, 40, 871 - 874. https://doi.org/10.1021/je00020a029
Aminabhavi, T. M., Patil, V. B., Aralaguppi, M. L. and Phayde, H. T. S. (1996). Density, viscosity, and refractive index of the binary mixtures of cyclohexane with hexane, heptane, octane, nonane, and decane at (298.15, 303.15, and 308.15) K, J. Chem. Eng. Data, 41(3), 521–525. https://doi.org/10.1021/je950279c
González, B., Dominguez, A. and Tojo, J. (2003). Viscosities, densities and speeds of sound of the binary systems: 2-propanol with octane, or decane, or dodecane at T = (293.15, 298.15, and 303.15) K, J. Chem. Thermodyn., 35(6), 939–953. https://doi.org/10.1016/S0021-9614(03)00047-8
González, B., Dominguez, A., Tojo, J. and Cores, R. (2004). Dynamic viscosities of 2-pentanol with alkanes (octane, decane, and dodecane) at three temperatures T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters, J. Chem. Eng. Data, 49(5), 1225–1230. https://doi.org/10.1021/je034208m.
Chowdhury, M. A., Majid, M. A. and Saleh, M. A. (2001). Volumetric and viscometric behaviour of binary systems: (1-hexanol + hydrocarbons), J. Chem. Thermodyn., 33(3), 347–360. https://doi.org/10.1006/jcht.2000.0751
Mahajan, A. R. and Mirgane, S. R. (2013). Thermodynamic properties of binary liquid mixtures of n-dodecane with an alkan-1-ol or an alkan-2-ol at 298.15 K: A comparative study, J. Solution Chem., 42(6), 1146–1168. doi: 10.1007/s10953-013-0024-8.
Sastry, N. V. and Raj, M. M. (1996). Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol + hexane and +heptane at 303.15 and 313.15 K, J. Chem. Eng. Data, 41(3), 612–618. https://doi.org/10.1021/je950172p
Dubey, G. P. and Sharma, M. (2008). Study of molecular interactions in binary liquid mixtures of 1-octanol with n-hexane, n-octane, and n-decane using volumetric, viscometric, and acoustic properties, J. Chem. Thermodyn., 40(6), 991–1000. https://doi.org/10.1016/j.jct.2008.02.005
Dubey, G. P. and Sharma, M. (2008). Acoustic, thermodynamic, viscometric and volumetric studies in binary systems of 1-decanol with n-hexane, n-octane and n-decane with respect to temperature, J. Mol. Liq., 143(2–3), 109–114. https://doi.org/10.1016/j.molliq.2008.06.015
Bravo, R., Pintos, M., Amigo, A. and Garcia, M. (1991). Densities and viscosities of the binary mixtures decanol+some n-alkanes at 298.15 k, Phys. Chem. Liq., 22(4), 245–253. https://doi.org/10.1080/00319109108030626
González, B., Calvar, N., Domínguez, Á. and Tojo, J. (2007). Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters, J. Chem. Thermodyn., 39(2), 322–334. https://doi.org/10.1016/j.jct.2006.06.008
Kumar, H., Singla, M., Khosla, A. and Gaba, R. (2011). Viscometric studies of binary liquid mixtures of cyclopentane (1) + 2-propanol (2), + 1-butanol (2), and + 2-butanol (2) at T = (298.15 and 308.15) K, J. Mol. Liq., 158(3), 182–186. https://doi.org/10.1016/j.molliq.2010.12.002
El-Sayed, H. E. M. and Asfour, A. F. A. (2009). Viscometric and volumetric properties of 10 regular binary systems at 308.15 K and 313.15 K, Int. J. Thermophys., 30(6), 1773–1790. https://doi.org/10.1007/s10765-009-0667-2
González, B., Domínguez, Á. and Tojo, J. (2006). Viscosities, densities, and speed of sound of the cycloalkanes with secondary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters, J. Chem. Eng. Data, 51(3), 1076–1087. https://doi.org/10.1021/je050540h
Ghael, N. Y., Gardas, R. L. and Oswal, S. L. (2009). Volumetric and transport properties of ternary mixtures containing 1-alkanol + ethyl ethanoate + cyclohexane at 303.15 K: Experimental data, correlation and prediction by ERAS model, Thermochim. Acta, 491(1–2), 44–57. https://doi.org/10.1016/j.tca.2009.02.022
Ali, A., Abida and Hyder, S. (2004). Study of intermolecular interactions in binary mixtures of cyclohexane with 1-alkanols at 308 K, Phys. Chem. Liq., 42(4), 411–422. https://doi.org/10.1080/00319100410001697864
Hamzehlouia, S. and Asfour, A. F. A. (2012). Densities and viscosities of ten binary and ten ternary regular solution systems at 308.15 and 313.15 K, J. Mol. Liq., 174, 143–152. https://doi.org/10.1016/j.molliq.2012.06.020
Orge, B., Iglesias, M. Rodríguez, A., Canosa, J. M. and Tojo, J. (1997). Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K, Fluid Phase Equilib., 133(1–2), 213–227. https://doi.org/10.1016/S0378-3812(97)00031-9
Feitosa, F. X., Caetano, A. C. R., Cidade, T. B. and Sant’Ana, H. B. D. (2009). Viscosity and Density of Binary Mixtures of Ethyl Alcohol with n-Alkanes (C6, C8, and C10), J. Chem. Eng. Data, 54(10)., 2957–2963. https://doi.org/10.1021/je800925v
Sastry, N. V. and Valand, M. K. (1996). Densities, Speeds of Sound, Viscosities, and Relative Permittivities for 1-Propanol + and 1-Butanol + Heptane at 298.15 K and 308.15 K, J. Chem. Eng. Data, 9568(96), 1421–1425. https://doi.org/10.1021/je960135d
Sastry, N. V. and Valand, M. K. (1996). Viscosities and densities for heptane + 1-pentanol, +1-hexanol, +1-heptanol, +1-octanol, +1-decanol, and +1-dodecanol at 298.15 K and 308.15 K, J. Chem. Eng. Data, 41(6), 1426–1428. https://doi.org/10.1021/je9601725
Estrada-Baltazar, A. Iglesias-Silva, G. A. and Caballero-Cerón, C. (2013). Volumetric and transport properties of binary mixtures of n -octane + ethanol, + 1-propanol, + 1-butanol, and + 1-pentanol from (293.15 to 323.15) k at atmospheric pressure, J. Chem. Eng. Data, 58(12), 3351–3363. https://doi.org/10.1021/je4004806
Dubey, G. P., Sharma, M. and Dubey, N. (2008). Study of densities, viscosities, and speeds of sound of binary liquid mixtures of butan-1-ol with n-alkanes (C6, C8, and C10) at T = (298.15, 303.15, and 308.15) K, J. Chem. Thermodyn., 40(2), 309–320. https://doi.org/10.1016/j.jct.2007.05.016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 UNIMAS Publisher
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.
To download Copyright Transfer Statement for Journal, click here