Viscosity for Some Organic Binary Liquid Systems: A Theoretical Study on Correlative Modeling

Authors

  • Hasan Mahmud Ornok Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
  • Md. Niamat Ullah Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
  • M. Mehedi Hasan Rock Division of Material Chemistry, Graduate School of Natural Science and Technology, Japan, Kanazawa University
  • Faisal I Chowdhury University of Chittagong
  • Shamim Akhtar Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh

Abstract

This study investigates the performance of different groups of binary liquid mixtures for various aliphatic hydrocarbons of both polar and non-polar types. This highlights the importance of selecting appropriate models based on the specific composition of the mixture for accurate predictions in industrial processes and product optimization. For this purpose, well-known equations of Grunberg-Nissan, Hind, Heric, Ausländer, McAllister 3- body and McAllister 4- body are utilized and tested for the viscosity data of different binary liquid systems, collected from previous research. The systems consist of various aliphatic alkanes, cycloalkanes, and alkanols. They are classified into four groups: Group A (Aliphatic Alkane + Alkane), Group B (Aliphatic Alkane + Cycloalkane), Group C (Aliphatic Alkane + Alkanol) and Group D (Aliphatic Cycloalkane + Alkanol). In order to measure the fitting capabilities for every group of systems, Standard Percentage Deviations (SPD) as well as temperature Average Standard Percentage Deviations (ASPD) for all of the systems are estimated. For both dynamic and kinematic viscosity correlations, among four categories, the best results are found for Group A (Aliphatic Alkanes + Aliphatic Alkanes), followed by Group B (Aliphatic Alkanes + Cycloalkanes), with the poorest results for Group C (Aliphatic Alkanes + Alkanols). In addition, with the increment of the chain length of the systems, a linear change in deviation is also observed.

 

References

Tamura, M. and Kurata, M. (1952). On the Viscosity of Binary Mixture of Liquids, Bull. Chem. Soc. Jpn., 25, 32–38. https://api.semanticscholar.org/CorpusID:98423982

Krishnan, M. R. V. and Laddha, G. S. (1968). Viscosities of Binary Liquid Mixtures. Prediction from Y-X Data, Ind. Eng. Chem. Fundam., 7, 324–327. https://api.semanticscholar.org/CorpusID:97315278

Soliman, K. and Marschall, E. (1990). Viscosity of selected binary, ternary, and quaternary liquid mixtures, J. Chem. Eng. Data, 35, 375–381. https://api.semanticscholar.org/CorpusID:94300148

Qunfang, L. and Yu-Chun, H. (1999). Correlation of viscosity of binary liquid mixtures, Fluid Phase Equilib., 154(1), 153–163. https://doi.org/10.1016/S0378-3812(98)00415-4

Mehrotra, A. K., Monnery, W. D. and Svrcek, W. Y. (1996). A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures, Fluid Phase Equilib., 117(1–2), 344–355. https://doi.org/10.1016/0378-3812(95)02971-0

Monnery, W. D., Svrcek, W. Y. and Mehrotra, A. K. (1995). Viscosity: A Critical Review of Practical Predictive and Correlative Methods, Can. J. Chem. Eng., 73, 3–40. https://doi.org/10.1002/cjce.5450730103

Reid, R. C., Prausnitz, J. M. and Polimg, B. E. (1987). The properties of gases & liquids: 4th Edition, McGraw-Hill Book Company, New York, NY. ISBN 0-07-051799-1

Chevalier, J. L., Petrino, P. and Bonhomme, Y. G. (1988). Estimation method for the kinematic viscosity of a liquid-phase mixture, Chem. Eng. Sci., 43(6), 1303–1309. https://doi.org/10.1016/0009-2509(88)85104-2

Bonhomme, Y. G., Petrino, P. and Chevalier, J. L. (1994). UNIFAC—VISCO group contribution method for predicting kinematic viscosity: extension and temperature dependence, Chem. Eng. Sci., 49(11), 1799–1806. https://doi.org/10.1016/0009-2509(94)80065-0

Kijevčanin, M. L. J., Kostić, V. Z., Radović, I. R., Djordjević, B. D. and Šerbanović, S. P. (2008). Viscosity of binary non-electrolyte liquid mixtures: Prediction and correlation, Chem. Ind. Chem. Eng. Q., 14(4), 223–226. https://doi.org/10.2298/CICEQ0804223K

Rocky, M. M. H. and Akhtar, S. (2020). Correlations and Predictions for Viscosity of Binary Liquid Systems: New UNIFAC-VISCO Interaction Parameters for O, N, and S Containing Organic Liquids, Ind. Eng. Chem. Res., 59(16), 8004–8017. https://doi.org/10.1021/acs.iecr.0c00335

Zhang, J., Moosavi, M., Rostami, A. A. and Vargas, F. M. (2018). Viscosity modeling of water + alkanediols mixtures, J. Mol. Liq., 249, 326–333. https://doi.org/10.1016/j.molliq.2017.11.005

Billah, M. M., Rocky, M. M. H., Hossen, I., Hossain, I., Hossain, M. N. and Akhtar, S. (2018). Densities, viscosities, and refractive indices for the binary mixtures of tri-n-butyl phosphate (TBP) with toluene and ethylbenzene between (303.15 and 323.15) K, J. Mol. Liq., 265, 611–620. https://doi.org/10.1016/j.molliq.2018.05.126

Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc., 86(2), 127–130. https://doi.org/10.1021/ja01056a002

Baylaucq, A., Daugé, P. and Boned, C. (1997). Viscosity and density of the ternary mixture heptane+methylcyclohexane+1-methylnaphthalene, Int. J. Thermophys., 18(5), 1089–1107. https://doi.org/10.1007/BF02575251

Focke, W. W. and Du Plessis, B. (2004). Correlating Multicomponent Mixture Properties with Homogeneous Rational Functions, Ind. Eng. Chem. Res., 43, 8369–8377. https://api.semanticscholar.org/CorpusID:95645628

Focke, W. W. (2009). Weighted-power-mean mixture model for the Gibbs energy of fluid mixtures. Industrial & Engineering Chemistry Research, 48(11), 5537-5541. https://doi.org/10.1021/ie900083h

Bajić, D. M., Šerbanović, S. P., Živković, E. M., Jovanović, J. and Kijevčanin, M. L. (2014). Prediction and correlation of viscosity of binary mixtures of ionic liquids with organic solvents, J. Mol. Liq., 197, 1–6. https://doi.org/10.1016/j.molliq.2014.04.005

Kehiaian, H. V. (1985). Thermodynamics of binary liquid organic mixtures, Pure Appl. Chem., 57(1), 15–30. https://doi.org/10.1351/pac198557010015

Zafarani-Moattar, M. T. and Tohidifar, N. (2013). Effect of temperature on volumetric and transport properties of ternary poly ethylene glycol di-methyl ether 2000+poly ethylene glycol 400+water and the corresponding binary aqueous solutions: Measurement and correlation, Fluid Phase Equilib., 343, 43–57. https://doi.org/10.1016/j.fluid.2013.01.009

Knežević-Stevanović, A. B., Babić, G. M., Kijevčanin, M. L., Šerbanović, S. P. and Grozdanić, D. K. (2012). Correlation of the liquid mixture viscosities, J. Serbian Chem. Soc., 77(8), 1083–1089. doi: 10.2298/JSC120127038K.

Sinha, A. and Roy, M. N. (2006). Densities , Viscosities , and Sound Speeds of Some Acetate Salts in Binary Mixtures, J. Chem. Eng. Data, 51(4), 1415–1423. https://doi.org/10.1021/je060113j

Tian, Q. and Liu, H. (2007). Densities and viscosities of binary mixtures of tributyl phosphate with hexane and dodecane from (298.15 to 328.15) K, J. Chem. Eng. Data, 52(3), 892–897. https://doi.org/10.1021/je060491o

González, B., Calvar, N., Gómez, E. and Domínguez, Á. (2007). Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K, J. Chem. Thermodyn., 39(12), 1578–1588. https://doi.org/10.1016/j.jct.2007.05.004

Qiao, Y., Di, Z., Ma, Y., Ma, P. and Xia, S. (2010). Viscosities of pure water, acetic acid + water, and p-xylene + acetic acid + water at different temperature and pressure, Chinese J. Chem. Eng., 18(3), 446–454. https://doi.org/10.1016/S1004-9541(10)60242-X

Jouyban, A., Khoubnasabjafari, M., Vaez-Gharamaleki, Z., Fekari, Z. and Acree, W. E. (2005). Calculation of the viscosity of binary liquids at various temperatures using Jouyban-Acree model, Chem. Pharm. Bull., 53(5), 519–523. https://doi.org/10.1248/cpb.53.519

Ramachandran, D., Devi, N. G. and Srinivasa Rao, N. V. N. B. (2018). Correlative and predictive models of viscosity study on Propiophenone with isomeric xylenes binary mixtures at T=(303.15 to 318.15) K, Korean J. Chem. Eng., 35(9), 1919–1931. https://doi.org/10.1007/s11814-018-0104-y

Grunberg, L. and Nissan, A. H. (1949). Mixture law for viscosity, Nature, 164(4175), 799–800. https://doi.org/10.1038/164799b0

Hind, R. K., McLaughlin, E. and Ubbelohde, A. R. (1960). Structure and viscosity of liquids viscosity-temperature relationships of pyrrole and pyrrolidine, Trans. Faraday Soc., 56, 331–334. https://doi.org/10.1039/TF9605600331

Heric, E. L. (1966). On the Viscosity of Ternary Mixtures, J. Chem. Eng. Data, 11(1), 66–68. https://doi.org/10.1021/je60028a019

Ausländer, G. (1964). The Properties of Mixtures: Part I., Br. Chem. Eng., 9, 618–619.

McAllister, R. A. (1960). The viscosity of liquid mixtures, AIChE J., 6(3), 427–431. https://doi.org/10.1002/aic.690060316

Dey, R., Harshavardhan, A. and Verma, S. (2015). Viscometric investigation of binary, ternary and quaternary liquid mixtures: Comparative evaluation of correlative and predictive models, J. Mol. Liq., 211, 686–694. https://doi.org/10.1016/j.molliq.2015.07.042.

Dikio, E. D., Vilakazi, G. and Ngoy, P. (2013). Density, dynamic viscosity and derived properties of binary mixtures of m-xylene, o-xylene, and p-xylene, with pyridine at T = 293.15, 303.15, 313.15 and 323.15 K, J. Mol. Liq., 177, 190–197. https://doi.org/10.1016/j.molliq.2012.10.021

Majstorović, D. M., Živković, E. M. and Kijevčanin, M. L. (2017). Volumetric and viscometric study and modelling of binary systems of diethyl tartrate and alcohols, J. Mol. Liq., 248, 219–226. https://doi.org/10.1016/j.molliq.2017.10.067

Lambert, R. J. W., Mytilinaios, I., Maitland, L. and Brown, A. M. (2012). Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel, Comput. Methods Programs Biomed., 107(2), 155–163. https://doi.org/10.1016/j.cmpb.2011.05.009

Walsh, S. and Diamond, D. (1995). Non-linear curve fitting using microsoft excel solver, Talanta, 42(4), 561–572. https://doi.org/10.1016/0039-9140(95)01446-I

Dasgupta, P. K. (2008). Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays, J. Chromatogr. A, 1213(1), 50–55. https://doi.org/10.1016/j.chroma.2008.08.108

Hasan, M., Shirude, D. F., Hiray, A. P., Sawant, A. B. and U. B. Kadam, U. B. (2007). Densities, viscosities and ultrasonic velocities of binary mixtures of methylbenzene with hexan-2-ol, heptan-2-ol and octan-2-ol at T = 298.15 and 308.15 K, Fluid Phase Equilib., 252(1–2), 88–95. https://doi.org/10.1016/j.fluid.2007.01.001

Hasan, M., Shirude, D. F., Hiray, A. P., Sawant, A. B. and U. B. Kadam, U. B. (2006). Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and 313.15) K, J. Chem. Eng. Data, 51(5), 1922–1926. https://doi.org/10.1021/je0602519

Shan, Z. and Asfour, A. F. A. (1999). Viscosities and densities of nine binary 1-alkanol systems at 293.15 K and 298.15 K, J. Chem. Eng. Data, 44(1), 118–123. https://doi.org/10.1021/je980177x

Matos, J. S., Trenzado, J. L., Caro, M. N., Romano, E. and Pérez E. (1994).Volumetric study of (an aliphatic methyl ester + heptane or nonane) at the temperature 298.15 K, J. Chem. Thermodyn., 26(8), 857–862. https://doi.org/10.1006/jcht.1994.1102

Rathnam, M. V., Mohite, S. and Kumar, M. S. (2009). Thermophysical properties of isoamyl acetate or methyl benzoate + hydrocarbon binary mixtures, at (303.15 and 313.15) K, J. Chem. Eng. Data, 54(2), 305–309. https://doi.org/10.1021/je800325d

Aucejo, A., Burguet, M. C., Munoz, R. and Marques, J. L. (1995). Densities, viscosities, and refractive indices of the binary liquid systems n-alkanes + isomers of hexane at 298.15 K, J. Chem. Eng. Data, 40, 871 - 874. https://doi.org/10.1021/je00020a029

Aminabhavi, T. M., Patil, V. B., Aralaguppi, M. L. and Phayde, H. T. S. (1996). Density, viscosity, and refractive index of the binary mixtures of cyclohexane with hexane, heptane, octane, nonane, and decane at (298.15, 303.15, and 308.15) K, J. Chem. Eng. Data, 41(3), 521–525. https://doi.org/10.1021/je950279c

González, B., Dominguez, A. and Tojo, J. (2003). Viscosities, densities and speeds of sound of the binary systems: 2-propanol with octane, or decane, or dodecane at T = (293.15, 298.15, and 303.15) K, J. Chem. Thermodyn., 35(6), 939–953. https://doi.org/10.1016/S0021-9614(03)00047-8

González, B., Dominguez, A., Tojo, J. and Cores, R. (2004). Dynamic viscosities of 2-pentanol with alkanes (octane, decane, and dodecane) at three temperatures T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters, J. Chem. Eng. Data, 49(5), 1225–1230. https://doi.org/10.1021/je034208m.

Chowdhury, M. A., Majid, M. A. and Saleh, M. A. (2001). Volumetric and viscometric behaviour of binary systems: (1-hexanol + hydrocarbons), J. Chem. Thermodyn., 33(3), 347–360. https://doi.org/10.1006/jcht.2000.0751

Mahajan, A. R. and Mirgane, S. R. (2013). Thermodynamic properties of binary liquid mixtures of n-dodecane with an alkan-1-ol or an alkan-2-ol at 298.15 K: A comparative study, J. Solution Chem., 42(6), 1146–1168. doi: 10.1007/s10953-013-0024-8.

Sastry, N. V. and Raj, M. M. (1996). Densities, speeds of sound, viscosities, dielectric constants, and refractive indices for 1-heptanol + hexane and +heptane at 303.15 and 313.15 K, J. Chem. Eng. Data, 41(3), 612–618. https://doi.org/10.1021/je950172p

Dubey, G. P. and Sharma, M. (2008). Study of molecular interactions in binary liquid mixtures of 1-octanol with n-hexane, n-octane, and n-decane using volumetric, viscometric, and acoustic properties, J. Chem. Thermodyn., 40(6), 991–1000. https://doi.org/10.1016/j.jct.2008.02.005

Dubey, G. P. and Sharma, M. (2008). Acoustic, thermodynamic, viscometric and volumetric studies in binary systems of 1-decanol with n-hexane, n-octane and n-decane with respect to temperature, J. Mol. Liq., 143(2–3), 109–114. https://doi.org/10.1016/j.molliq.2008.06.015

Bravo, R., Pintos, M., Amigo, A. and Garcia, M. (1991). Densities and viscosities of the binary mixtures decanol+some n-alkanes at 298.15 k, Phys. Chem. Liq., 22(4), 245–253. https://doi.org/10.1080/00319109108030626

González, B., Calvar, N., Domínguez, Á. and Tojo, J. (2007). Dynamic viscosities of binary mixtures of cycloalkanes with primary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters, J. Chem. Thermodyn., 39(2), 322–334. https://doi.org/10.1016/j.jct.2006.06.008

Kumar, H., Singla, M., Khosla, A. and Gaba, R. (2011). Viscometric studies of binary liquid mixtures of cyclopentane (1) + 2-propanol (2), + 1-butanol (2), and + 2-butanol (2) at T = (298.15 and 308.15) K, J. Mol. Liq., 158(3), 182–186. https://doi.org/10.1016/j.molliq.2010.12.002

El-Sayed, H. E. M. and Asfour, A. F. A. (2009). Viscometric and volumetric properties of 10 regular binary systems at 308.15 K and 313.15 K, Int. J. Thermophys., 30(6), 1773–1790. https://doi.org/10.1007/s10765-009-0667-2

González, B., Domínguez, Á. and Tojo, J. (2006). Viscosities, densities, and speed of sound of the cycloalkanes with secondary alcohols at T = (293.15, 298.15, and 303.15) K: New UNIFAC-VISCO interaction parameters, J. Chem. Eng. Data, 51(3), 1076–1087. https://doi.org/10.1021/je050540h

Ghael, N. Y., Gardas, R. L. and Oswal, S. L. (2009). Volumetric and transport properties of ternary mixtures containing 1-alkanol + ethyl ethanoate + cyclohexane at 303.15 K: Experimental data, correlation and prediction by ERAS model, Thermochim. Acta, 491(1–2), 44–57. https://doi.org/10.1016/j.tca.2009.02.022

Ali, A., Abida and Hyder, S. (2004). Study of intermolecular interactions in binary mixtures of cyclohexane with 1-alkanols at 308 K, Phys. Chem. Liq., 42(4), 411–422. https://doi.org/10.1080/00319100410001697864

Hamzehlouia, S. and Asfour, A. F. A. (2012). Densities and viscosities of ten binary and ten ternary regular solution systems at 308.15 and 313.15 K, J. Mol. Liq., 174, 143–152. https://doi.org/10.1016/j.molliq.2012.06.020

Orge, B., Iglesias, M. Rodríguez, A., Canosa, J. M. and Tojo, J. (1997). Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K, Fluid Phase Equilib., 133(1–2), 213–227. https://doi.org/10.1016/S0378-3812(97)00031-9

Feitosa, F. X., Caetano, A. C. R., Cidade, T. B. and Sant’Ana, H. B. D. (2009). Viscosity and Density of Binary Mixtures of Ethyl Alcohol with n-Alkanes (C6, C8, and C10), J. Chem. Eng. Data, 54(10)., 2957–2963. https://doi.org/10.1021/je800925v

Sastry, N. V. and Valand, M. K. (1996). Densities, Speeds of Sound, Viscosities, and Relative Permittivities for 1-Propanol + and 1-Butanol + Heptane at 298.15 K and 308.15 K, J. Chem. Eng. Data, 9568(96), 1421–1425. https://doi.org/10.1021/je960135d

Sastry, N. V. and Valand, M. K. (1996). Viscosities and densities for heptane + 1-pentanol, +1-hexanol, +1-heptanol, +1-octanol, +1-decanol, and +1-dodecanol at 298.15 K and 308.15 K, J. Chem. Eng. Data, 41(6), 1426–1428. https://doi.org/10.1021/je9601725

Estrada-Baltazar, A. Iglesias-Silva, G. A. and Caballero-Cerón, C. (2013). Volumetric and transport properties of binary mixtures of n -octane + ethanol, + 1-propanol, + 1-butanol, and + 1-pentanol from (293.15 to 323.15) k at atmospheric pressure, J. Chem. Eng. Data, 58(12), 3351–3363. https://doi.org/10.1021/je4004806

Dubey, G. P., Sharma, M. and Dubey, N. (2008). Study of densities, viscosities, and speeds of sound of binary liquid mixtures of butan-1-ol with n-alkanes (C6, C8, and C10) at T = (298.15, 303.15, and 308.15) K, J. Chem. Thermodyn., 40(2), 309–320. https://doi.org/10.1016/j.jct.2007.05.016

Downloads

Published

2024-10-31

How to Cite

Hasan Mahmud Ornok, Md. Niamat Ullah, M. Mehedi Hasan Rock, I Chowdhury, F., & Shamim Akhtar. (2024). Viscosity for Some Organic Binary Liquid Systems: A Theoretical Study on Correlative Modeling. Journal of Applied Science &Amp; Process Engineering, 11(2), 153–165. Retrieved from https://publisher.unimas.my/ojs/index.php/JASPE/article/view/6493