A Study of Correlative Modeling on Viscosity for Some Organic Binary Liquid Systems

Authors

  • Md. Niamat Ullah Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
  • Hasan Mahmud Ornok Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
  • Sharmin Sultana Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
  • M. Mehedi Hasan Rocky Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Japan
  • Faisal I Chowdhury Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh
  • Shamim Akhtar Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh

DOI:

https://doi.org/10.33736/jaspe.6466.2024

Keywords:

Binary Liquid System, Viscosity, Correlative Model, Ausländer Model, McAllister Model

Abstract

In order to systematically investigate the correlating capability of viscosity models, six well-known correlative models of Grunberg-Nissan (GN), Hind (HND), Heric (HRC), Ausländer (AUS) for dynamic viscosity, η, and McAllister 3-body (MAC3) and McAllister 4-body (MAC4) for kinematic viscosity, ν, were employed and tested for viscosity data of 83 organic binary liquid systems consisting of 33 different aromatic hydrocarbons (ArH), alkanes (RH), cycloalkanes (CyRH) and alkanols (ROH). Keeping ArH as a common component and increasing the chain length of other components, the systems were categorized as Category 1: ArH + RH, Category 2: ArH + CyRH, Category 3: ArH + ArH and Category 4: ArH + ROH. For all the models fitting parameters along with the statistical parameters such as SPD σ(%), ASPD σ(%), OASPD σ(%) and GOASPD σ(%) were computed by the  Nonlinear Least Squares Minimization (NLSM) technique with the ‘Solver’ add-in package. Among the four categories, Category 3, OASPD, σ(%) values lie between 0.16 and 0.21, indicating that all the models fitted extremely well. However, for dynamic viscosities, the η AUS model demonstrated the best correlating capabilities with GOASPD σ(%) of 0.48, while the HND model performed the poorest with GOASPD σ(%) at 3.8. For the kinematic viscosities, ν in both the MAC3 and MAC4 models yielded satisfactory results with GOASPD σ(%) as < 1.0 %.

References

Zafarani-Moattar, M. T. and Tohidifar, N. (2013). Effect of temperature on volumetric and transport properties of ternary poly ethylene glycol di-methyl ether 2000+poly ethylene glycol 400+water and the corresponding binary aqueous solutions: Measurement and correlation, Fluid Phase Equilib., 343, 43–57. https://doi.org/10.1016/j.fluid.2013.01.009.

Knežević-Stevanović, A. B., Babić, G. M., Kijevčanin, M. L., Šerbanović, S. P. and Grozdanić, D. K. (2012). Correlation of the liquid mixture viscosities, J. Serbian Chem. Soc., 77(8), 1083–1089. https://doi.org/10.2298/JSC120127038K.

Kijevčanin, M. L. J., Kostić, V. Z., Radović, I. R., Djordjević, B. D. and Šerbanović, S. P. (2008).Viscosity of binary non-electrolyte liquid mixtures: Prediction and correlation, Chem. Ind. Chem. Eng. Q., 14(4), 223–226. https://doi.org/10.2298/CICEQ0804223K.

Dey, R., Harshavardhan, A. and Verma, S. (2015). Viscometric investigation of binary, ternary and quaternary liquid mixtures: Comparative evaluation of correlative and predictive models, J. Mol. Liq., 211, 686–694. https://doi.org/10.1016/j.molliq.2015.07.042.

Dikio, E. D., Vilakazi, G. and Ngoy, P. (2013). Density, dynamic viscosity and derived properties of binary mixtures of m-xylene, o-xylene, and p-xylene, with pyridine at T = 293.15, 303.15, 313.15 and 323.15 K, J. Mol. Liq., 177, 190–197. https://doi.org/10.1016/j.molliq.2012.10.021.

Majstorović, D. M., Živković, E. M. and Kijevčanin, M. L. (2017). Volumetric and viscometric study and modelling of binary systems of diethyl tartrate and alcohols, J. Mol. Liq., 248, 219–226. https://doi.org/10.1016/j.molliq.2017.10.067.

Sinha, A. and Roy, M. N. (2006). Densities , Viscosities , and Sound Speeds of Some Acetate Salts in Binary Mixtures,” J. Chem. Eng. Data, 51(4), 1415–1423. https://doi.org/10.1021/je060113j.

Tian, Q. and Liu, H. (2007). Densities and viscosities of binary mixtures of tributyl phosphate with hexane and dodecane from (298.15 to 328.15) K,” J. Chem. Eng. Data, 52(3), 892–897. https://doi.org/10.1021/je060491o.

González, B., Calvar, N., Gómez, E. and Domínguez, Á. (2007). Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K, J. Chem. Thermodyn., 39(12), 1578–1588. https://doi.org/10.1016/j.jct.2007.05.004.

Qiao, Y., Di, Z., Ma, Y., Ma, P. and Xia, S. (2010). Viscosities of pure water, acetic acid + water, and p-xylene + acetic acid + water at different temperature and pressure, Chinese J. Chem. Eng., 18(3), 446–454. https://doi.org/10.1016/S1004-9541(10)60242-X.

Jouyban, A., Khoubnasabjafari, M., Vaez-Gharamaleki, Z., Fekari, Z. and Acree, W. E. (2007). Calculation of the viscosity of binary liquids at various temperatures using Jouyban-Acree model, Chem. Pharm. Bull., 53(5), 519–523. https://doi.org/10.1248/cpb.53.519.

Ramachandran, D., Devi, N. G. and Srinivasa Rao, N. V. N. B. (2018). Correlative and predictive models of viscosity study on Propiophenone with isomeric xylenes binary mixtures at T=(303.15 to 318.15) K,” Korean J. Chem. Eng., 35(9), 1919–1931. https://doi.org/10.1007/s11814-018-0104-y.

Rowley, R. L. (1982). A local composition model for multicomponent liquid mixture thermal conductivities, Chem. Eng. Sci., 37(6), 897–904. https://doi.org/10.1016/0009-2509(82)80178-4.

Mehrotra, A. K., Monnery, W. D. and Svrcek, W. Y. (1996). A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures, Fluid Phase Equilib., 117(1–2), 344–355. https://doi.org/10.1016/0378-3812(95)02971-0.

Bajić, D. M., Šerbanović, S. P., Živković, E. M., Jovanović, J. and Kijevčanin, M. L. (2014). Prediction and correlation of viscosity of binary mixtures of ionic liquids with organic solvents, J. Mol. Liq., 197, 1–6. https://doi.org/10.1016/j.molliq.2014.04.005.

Reid, R. C., Prausnitz, J. M. and Polimg, B. E. (1987). The properties of gases & liquids: 4th Edition, McGraw-Hill Book Company, New York, NY. ISBN 0-07-051799-1.

Kehiaian, H. V. (1985). Thermodynamics of binary liquid organic mixtures,” Pure Appl. Chem., 57(1), 15–30. https://doi.org/10.1351/pac198557010015.

Qunfang, L. and Yu-Chun, H. (1999). Correlation of viscosity of binary liquid mixtures, Fluid Phase Equilib., 154(1), 153–163. https://doi.org/10.1016/S0378-3812(98)00415-4.

Monnery, W. D., Svrcek, W. Y. and Mehrotra, A. K. (1995). Viscosity: A Critical Review of Practical Predictive and Correlative Methods, Can. J. Chem. Eng., 73, 3–40.

Grunberg, L. and Nissan, A. H. (1949). Mixture law for viscosity, Nature, 164(4175), 799–800. https://doi.org/10.1038/164799b0.

Hind, R. K., McLaughlin, E. and Ubbelohde, A. R. (1960). Structure and viscosity of liquids viscosity-temperature relationships of pyrrole and pyrrolidine, Trans. Faraday Soc., 56, 331–334. doi: 10.1039/tf9605600331.

Heric, E. L. (1966). On the Viscosity of Ternary Mixtures, J. Chem. Eng. Data, 11(1), 66–68. https://doi.org/10.1627/jpi1958.5.559.

McAllister, R. A. (1960). The viscosity of liquid mixtures, AIChE J., 6(3), 427–431. https://doi.org/10.1002/aic.690060316.

Lambert, R. J. W., Mytilinaios, I., Maitland, L. and Brown, A. M. (2012). Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel, Comput. Methods Programs Biomed., 107(2), 155–163. https://doi.org/10.1016/j.cmpb.2011.05.009.

Walsh, S. and Diamond, D. (1995). Non-linear curve fitting using microsoft excel solver, Talanta, 42(4), 561–572. https://doi.org/10.1016/0039-9140(95)01446-I.

Dasgupta, P. K. (2008). Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays, J. Chromatogr. A, 1213(1), 50–55. https://doi.org/10.1016/j.chroma.2008.08.108.

Hasan, M., Shirude, D. F., Hiray, A. P., Sawant, A. B. and U. B. Kadam, U. B. (2007). Densities, viscosities and ultrasonic velocities of binary mixtures of methylbenzene with hexan-2-ol, heptan-2-ol and octan-2-ol at T = 298.15 and 308.15 K, Fluid Phase Equilib., 252(1–2), 88–95. https://doi.org/10.1016/j.fluid.2007.01.001.

Hasan, M., Shirude, D. F., Hiray, A. P., Sawant, A. B. and U. B. Kadam, U. B. (2006). Densities, viscosities, and speed of sound studies of binary mixtures of methylbenzene with heptan-1-ol, octan-1-ol, and decan-1-ol at (303.15 and 313.15) K,” J. Chem. Eng. Data, 51(5), 1922–1926. https://doi.org/10.1021/je0602519.

Shan, Z. and Asfour, A. F. A. (1999). Viscosities and densities of nine binary 1-alkanol systems at 293.15 K and 298.15 K, J. Chem. Eng. Data, 44(1), 118–123. https://doi.org/10.1021/je980177x.

Matos, J. S., Trenzado, J. L., Caro, M. N., Romano, E. and Pérez E. (1994).Volumetric study of (an aliphatic methyl ester + heptane or nonane) at the temperature 298.15 K, J. Chem. Thermodyn., 26(8), 857–862. https://doi.org/10.1006/jcht.1994.1102.

Rathnam, M. V., Mohite, S. and Kumar, M. S. (2009). Thermophysical properties of isoamyl acetate or methyl benzoate + hydrocarbon binary mixtures, at (303.15 and 313.15) K, J. Chem. Eng. Data, 54(2), 305–309. https://doi.org/10.1021/je800325d.

Rocky, M. M. H. and Akhtar, S. (2020). Correlations and Predictions for Viscosity of Binary Liquid Systems: New UNIFAC-VISCO Interaction Parameters for O, N, and S Containing Organic Liquids, Ind. Eng. Chem. Res., 59(16), 8004–8017. https://doi.org/10.1021/acs.iecr.0c00335.

Lal, K., Tripathi, N. and Dubey, G. P. (2000). Densities, viscosities, and refractive indices of binary liquid mixtures of hexane, decane, hexadecane, and squalane with benzene at 298.15 K, J. Chem. Eng. Data, 45(5), 961–964. https://doi.org/10.1021/je000103x.

El-Sayed, H. E. M. and Asfour, A. F. A. (2009). Viscometric and volumetric properties of 10 regular binary systems at 308.15 K and 313.15 K, Int. J. Thermophys., 30(6), 1773–1790. https://doi.org/10.1007/s10765-009-0667-2.

Awwad, A. M., Al-Azzawi, S. F. and Salman, M. A. (1986). Volumes and viscosities of benzene + n-alkane mixtures, Fluid Phase Equilib., 31(2), 171–182. https://doi.org/10.1016/0378-3812(86)90011-7.

Iloukhani, H. and Sameti, M. R. (2005). Viscosities and Excess Molar Volumes of the Ternary System Toluene (1) + Cyclohexane (2) + Pentane (3) at 298.15 K, J. Chem. Eng. Data, 50(6), 1928–1931.https://doi.org/10.1021/je0501944 CCC.

Rahaman, M. A., Aziz, M. S. I. and Akhtar, S. (2011). Volumetric properties of some binary liquid systems: N-Heptane + Aromatic hydrocarbons between 303.15 and 323.15 K, J. Mol. Liq., 162(1), 26–32. https://doi.org/10.1016/j.molliq.2011.05.012.

Gherwi, W. A. A., Nhaesi, A. H. and Asfour, A. F. A. (2006). Densities and kinematic viscosities of ten binary liquid regular solutions at 308.15 and 313.15 K, J. Solution Chem., 35(3), 455–470. https://doi.org/10.1007/s10953-005-9005-x.

Chevalier, J. L. E., Petrino, P. J. and Bonhomme, Y. H. G. (1990). Viscosity and Density of Some Aliphatic, Cyclic, and Aromatic Hydrocarbons Binary Liquid Mixtures, J. Chem. Eng. Data, 35(2), 206–212. https://doi.org/10.1021/je00060a034.

Pérez, M. D., Franjo, C., Pico, J., Segade, L., Cabeza, O. and Jiménez, E. (2009). Experimental study of the dynamic viscosity deviations in the binary systems: Hexane + ethylbenzene, + o-xylene, + m-xylene, + p-xylene at 298.15 K, Int. J. Thermophys., 30(4), 1197–1201. https://doi.org/10.1007/s10765-009-0622-2.

Hamzehlouia, S. and Asfour, A. F. A. (2012). Densities and viscosities of ten binary and ten ternary regular solution systems at 308.15 and 313.15 K,” J. Mol. Liq., 174, 143–152. https://doi.org/10.1016/j.molliq.2012.06.020.

Yang, C., Xu, W. and Ma, P. (2004). Thermodynamic properties of binary mixtures of p-xylene with cyclohexane, heptane, octane, and N-methyl-2-pyrrolidone at several temperatures, J. Chem. Eng. Data, 49(6), 1794–1801. https://doi.org/10.1021/je049776w.

Dymond, J. H. and Young, K. J. (1981). Transport properties of nonelectrolyte liquid mixtures-V. Viscosity coefficients for binary mixtures of benzene plus alkanes at saturation pressure from 283 to 393 K, Int. J. Thermophys., 2(3), 237–247. https://doi.org/10.1007/BF00504187.

Hossain, M. S., Akhtar, S. and Verpoort, F. (2018). Densities and Dynamic Viscosities of Alicyclic Cyclohexane with Toluene, o -Xylene, and Mesitylene at T = (303.15 to 323.15) K and Atmospheric Pressure, J. Chem. Eng. Data, 63(6), 1885–1895. https://doi.org/10.1021/acs.jced.7b01003.

Serrano, L., Silva, J. A. and Farelo, F. (1990). Densities and Viscosities of Binary and Ternary Liquid Systems Containing Xylenes, J. Chem. Eng. Data, 35(3), 288–291. https://doi.org/10.1021/je00061a018.

Kouris, S. and Panaylotou, C. (1989). Dynamic Viscosity of Mixtures of Benzene, Ethanol, and n-Heptane at 298.15 K, J. Chem. Eng. Data, 34(2), 200–203. https://doi.org/10.1021/je00056a016.

Ali, A., Nain, A. K., Lal, B. and Chand, D. (2004). Densities, viscosities, and refractive indices of binary mixtures of benzene with isomeric butanols at 30°C, Int. J. Thermophys., 25(6), 1835–1847. https://doi.org/10.1007/s10765-004-7738-1.

Tsierkezos, N. G., Palaiologou, M. M. and Molinou, I. E. (2000). Densities and viscosities of 1-pentanol binary mixtures at 293.15 K, J. Chem. Eng. Data, 45(2), 272–275. https://doi.org/10.1021/je9902138.

Chowdhury, M. A., Majid, M. A. and Saleh, M. A. (2001). Volumetric and viscometric behaviour of binary systems: (1-hexanol + hydrocarbons), J. Chem. Thermodyn., 33(3), 347–360. https://doi.org/10.1006/jcht.2000.0751.

Nikam, P. S., Jagdale, B. S., Sawant, A. B. and Hasan, M. (2000). Densities and viscosities of binary mixtures of toluene with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, and 2-methylpropan-2-ol at (303.15, 308.15, 313.15) K, J. Chem. Eng. Data, 45(4), 559–563. https://doi.org/10.1021/je990317i.

Rattan, V. K., Singh, S. and Sethi, B. P. S. (2004). Viscosities, densities, and ultrasonic velocities of binary mixtures of ethylbenzene with ethanol, 1-propanol, and 1-butanol at (298.15 and 308.15)K, J. Chem. Eng. Data, 49(4), 1074–1077. https://doi.org/10.1021/je049912x.

Bhatia, S. C., Rani, R. and Bhatia, R. (2011). Viscosities, densities, speeds of sound and refractive indices of binary mixtures of o-xylene, m-xylene, p-xylene, ethylbenzene and mesitylene with 1-decanol at 298.15 and 308.15 K, J. Mol. Liq., 159(2), 132–141. https://doi.org/10.1016/j.molliq.2010.12.011.

Prasad, T. E. V., Chandrika, K., Haritha, M., Geetha, N. B. and Prasad, D. H. L. (1999). Density and viscosity of ethanol + o-xylene, ethanol + m-xylene, ethanol + p-xylene and methanol + o-xylene mixtures, Phys. Chem. Liq., 37(4), 429–434. https://doi.org/10.1080/00319109908031446.

Habibullah, M., Das, K. N., Rahman, I. M. M., Uddin, M. A., Saifuddin, K., Iwakabe, K. and Hasegawa, H. (2010). Density and Viscosity of the Binary Mixtures of Hexan-1-ol with Isomeric Xylenes at T ) ( 308 . 15 and 318 . 15 ) K and Atmospheric Pressure, J. Chem. Eng. Data, 55(11), 5370–5374. https://doi.org/10.1021/je100823t.

Prasad, T. E. V., Vallabhaneni, G. K. , Sameera, M. K., Bose, V. P. and Prasad, D. H. L. (2000). Density and viscosity of the binary mixtures formed by p-xylene with methanol, n-propanol and n-butanol+, Phys. Chem. Liq., 38(4), 475–480. https://doi.org/10.1080/00319100008030294.

Mutalik, V., Manjeshwar, L. S., Sairam, M. and Aminabhavi, T. M. (2006). Excess molar volumes, deviations in viscosity and refractive index of the binary mixtures of mesitylene with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at 298.15, 303.15, and 308.15 K, J. Mol. Liq., 129(3), 147–154. https://doi.org/10.1016/j.molliq.2006.02.007.

Kendall, J. and Monroe, K. P. (1917). The viscosity of liquids. ⅲ. ideal solution of solids in liquids, J. Am. Chem. Soc., 25(25), 2–6. https://doi.org/10.1021/ja02254a002

Katti, P. K. and Chaudhri, M. M. (1963). Viscosities of Binary Mixtures of Benzyl Acetate with Dioxane, Aniline, and rn-Cresol, J. Chem. Eng. Data, vol., 9(1), 442–443. https://doi.org/10.1021/je60022a047

Downloads

Published

2024-04-30

How to Cite

Md. Niamat Ullah, Hasan Mahmud Ornok, Sharmin Sultana, M. Mehedi Hasan Rocky, I Chowdhury, F., & Shamim Akhtar. (2024). A Study of Correlative Modeling on Viscosity for Some Organic Binary Liquid Systems. Journal of Applied Science &Amp; Process Engineering, 11(1), 13–30. https://doi.org/10.33736/jaspe.6466.2024