Review of the Approach to Modelling Pesticides Dispersion in Environment for Determining the Concentrations to Which Organisms are Exposed as Part of Risk Assessment

Authors

  • Kouadio Kouassi Saint-Pierre abLaboratoire des Procédés Industrielles, de Synthèses, de l’Environnement et des Énergies Nouvelles, Institut National Houphouët Boigny, Yamoussoukro
  • Assidjo Nogbou Emmanuel

DOI:

https://doi.org/10.33736/jaspe.5489.2023

Keywords:

Modeling, Pesticides, Aerial spraying, Risk assessment

Abstract

There is an interest in the toxicity of pesticides in plant protection treatments for humans and the environment. As such, assessing toxicity risk is essential. Risk assessment is constrained due to the large amount of data to be measured, short collection times, insufficient data even when available, and the absence of bioaccumulation of the pollutant in the target organism. Modelling becomes an ally in overcoming these shortcomings. The assessor thus has at his disposal statistical, compartmental, Gaussian, Lagrangian, and Eulerian models to estimate the exposure of target organisms.

References

OCDE/FAO. (2020). Perspectives agricoles de l'OCDE et de la FAO 2020-2029, Éditions OCDE, Paris/FAO, Rome. https://doi.org/10.1787/ccc6f09c-fr

UNEP. (2020). Environmental and health impacts of pesticides and fertilizers and ways of minimizing them - Envisioning a chemical-safe world.

De Luca, M., Vallet, A., Borghi, R. (2007). Contribution à la modélisation de la pulvérisation d’un liquide phytosanitaire en vue de réduire les pollutions. Journée Interdisciplinaires sur la Qualité de l’Air, Jan 2007, Villeneuve d’Ascq, France. 10 p

Carrier, G., & Bard, D. (2003). Analyse du risque toxicologique. Environnement et santé publique – Fondements et pratique. pp203-226. Edisem / Tec & Doc, Acton Vale / Paris

Taylor-Gooby, P., & Zinn, J. O. (2006). Risk in Social Science, New York, Oxford University Press.

Renn, O. (2008). Risk Governance: Coping with Uncertainty in a Complex World (1st ed.). Routledge.London. https://doi.org/10.4324/9781849772440

ISO. (2009). "Management du risque – Vocabulaire", ISO Guide 73, Organisation internationale de la normalisation, Genève.

Deram, A., & Van Staevel, E. (2006). Evaluation et acceptabilité des risques environnementaux. Synthèse de l’étude. Etude record n°04-0810//0811/1A. Juillet 2006

Gendreau, N., & Oberlin, G. (1998). Modélisation de synthèse des crues : modèles hydrologiques en débit-durée-fréquence et modèles hydrauliques. Revue Ingénieries – eau, agriculture, territoires – n° spécial 1998 « risque naturels » du CEMAGREF : Risques naturels : avalanches, crues, inondations, laves, torrentielles, incendies de forêt, 79-85

Jaykus, L. A. (1996). The application of quantitative risk assessment to microbial food safety risks. Critical reviews in microbiology, 22(4), 279-293. https://doi.org/10.3109/10408419609105483

Chen, Y., Jackson, K. M., Chea, F. P., & Schaffner, D. W. (2001). Quantification and variability analysis of bacterial cross-contamination rates in common food service tasks. Journal of food protection, 64(1), 72-80. https://doi.org/10.4315/0362-028X-64.1.72

Ferrier, S., (2002). Extended statistical approaches to modelling spatial pattern in biodiversity: the north-east New South Wales experience. II. Community-level modelling. Biodiversity &. Conservatio,. 11: 2309-2338. https://doi.org/10.1023/A:1021374009951

Assidjo, E., Sadat, A., Akmel, C., Akaki, D., Elleingand, E., & Yao, B. (2013). L’analyse des risques: outils innovant d’amélioration de la sécurité sanitaire des aliments’’. Revue Africaine de sante et production animales, Dakar.

BRGM, INERIS, ADEME, (2006). « Mesures » et « Modèles » : enjeux, avantages et inconvénients en contexte de gestion de sites pollués. BRGM EPI/ENV n°167/2006, INERIS DRC-75999-DESP 39/06, p.4.

European Commission EC, (2003). Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Version 2. European Chemical Bureau, 311.

van den Brink, N. W., Baveco, H., Bervoets, L., Perry, H., Vermeulen, F., de Winter, W., & van der Pol, J. (2007). Breaking ecotoxicological restraints in spatial planning (BERISP)-Manual for the BERISP-DSS. Alterra, Wageningen, The Netherlands, 72.

Unsworth, J. B., Wauchope, R. D., Klein, A. W., Dorn, E., Zeeh, B., Yeh, S. M., Akerblom. M, Racke. K.D.& Rubin, B. (1999). Significance of the long range transport of pesticides in the atmosphere. Pure and applied chemistry, 71(7), 1359-1383. https://doi.org/10.1351/pac199971071359

Gil, Y., & Sinfort, C. (2005). Emission of pesticides to the air during sprayer application: A bibliographic review. Atmospheric Environment, 39(28), 5183-5193. https://doi.org/10.1016/j.atmosenv.2005.05.019

Chahine, A., (2011). Modélisation de la dispersion aérienne de pesticides des échelles locales aux échelles régionales, influence des aménagements et quantification des niveaux d’exposition. Thèse de Doctorat. Centre International d’Etude Supérieures en Sciences Agronomiques, Montpellier SupAgro.

Brunet, Y., Dupont S., Chahine A. & Sinfort C. (2013). MODAPEX : Modélisation de la dispersion aérienne des pesticides et des niveaux d’exposition à l’échelle du paysage, programme « évaluation et réduction des risques liés à l’utilisation des pesticides », rapport scientifique.

BBA. (2002). Programm zur abschätzung der abdrift und verflüchtigungsbedingten deposition von psm wirkstoffen im nichtzielbereich nach freilandanwendungen. Tech. rep., BBA Germany

Boesten, J., Businelli, M., Delmas, A., Gottesbüren, B., Hanze, K., Jarvis, T., Jones,R., Klein, M., van der Linden, T., Rekolainen, S., Resseler, H., Roquero, C., Maier, W-M., Styczen, M., Thorsen, M., Travis, K. & Vanclooster, M. (2000). FOCUS groundwater scenarios in the EU review of active substances. Report of the FOCUS groundwater scenarios workgroup, EC document reference sanco/321/2000 rev, 2, 202.

Smith, R. W., & Miller, P. C. H. (1994). Drift predictions in the near nozzle region of a flat fan spray. Journal of Agricultural Engineering Research, 59(2), 111-120. https://doi.org/10.1006/jaer.1994.1068

Sarker, K. U., & Parkin, C. S. (1995). Prediction of spray drift from flat-fan hydraulic nozzles using dimensional analysis. In Brighton Crop Protection Conference Weeds (Vol. 2, pp. 529-536). Brit Crop Protection Council.

Teske, M.E., Valcore, D.L. & Hewitt, A. (2001). An analytical ground sprayer model. ASAE Annual International Meeting Sponsored by ASAE 01-1051. https://doi.org/10.13031/2013.7313

Atmo Auvergne-Rhône-Alpes. (2017). Pesticides dans l’air – Bibliographie sur la modélisation. Juillet 2017

Smaranda, C., & Gavrilescu, M. (2008). Migration and fate of persistent organic pollutants in the atmosphere-a modelling approach. Environmental Engineering & Management Journal (EEMJ), 7(6). ISSN 1582 - 9596

Devillers, J., Bintein, S., & Karcher, W. (1995). CHEMFRANCE: a regional level III fugacity model applied to France. Chemosphere, 30(3), 457-476. https://doi.org/10.1016/0045-6535(94)00425-T

Jury, W. A., Spencer, W. F., & Farmer, W. (1983). Behavior assessment model for trace organics in soil: I. Model description, 12(4), 558-564). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. https://doi.org/10.2134/jeq1983.00472425001200040025x

Suárez, L. A. (2005). PRZM-3, a model for predicting pesticide and nitrogen fate in the crop root and unsaturated soil zones: users manual for release 3.12. 2. US Environmental Protection Agency (EPA), Washington, DC.

Scholtz, M. T., Voldner, E., McMillan, A. C., & Van Heyst, B. J. (2002). A pesticide emission model (PEM) Part I: model development. Atmospheric Environment, 36(32), 5005-5013. https://doi.org/10.1016/S1352-2310(02)00570-8

Scholtz, M. T., Voldner, E., Van Heyst, B. J., McMillan, A. C., & Pattey, E. (2002). A pesticide emission model (PEM) Part II: model evaluation. Atmospheric Environment, 36(32), 5015-5024. https://doi.org/10.1016/S1352-2310(02)00571-X

Pasquill, F. (1974) Atmospheric diffusion: the dispersion of windborne material from industrial and other sources. E. Horwood.

Pasquill, F. (1974). Atmospheric Diffusion, 2nd edition. London: Ellis Horwood Ed.

Turner, D.B. (1994). Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, Second Edition. CRC Press. https://doi.org/10.1201/9780138733704

Briggs, G. A. (1973). Diffusion estimation for small emissions. Preliminary report (No. TID-28289). National Oceanic and Atmospheric Administration, Oak Ridge, Tenn.(USA). Atmospheric Turbulence and Diffusion Laboratory.

Griffiths, R. F. (1994). Errors in the use of the Briggs parameterization for atmospheric dispersion coefficients. Atmospheric Environment, 28(17), 2861-2865. https://doi.org/10.1016/1352-2310(94)90086-8

Thistle, H. (2000). The role of stability in fine pesticide droplet dispersion in the atmosphere: a review of physical concepts. Transactions of the ASAE 46, 1409-1413. https://doi.org/10.13031/2013.3038

Teske, M. E., Bird, S. L., Esterly, D. M., Curbishley, T. B., Ray, S. L., & Perry, S. G. (2002). AgDrift®: A model for estimating near‐field spray drift from aerial applications. Environmental Toxicology and Chemistry: An International Journal, 21(3), 659-671. https://doi.org/10.1002/etc.5620210327

USEPA. (1995). Users guide for the industrial source complex (ISC3) dispersion models. Vol.I- Users instructions. EPA-454/B-95-003a, Sept. 1995. USEPA Office of Air Quality Planning and Standards Emissions, Monitoring, and Analysis Division, Research Triangle Park, NC.

Craig, I. P. (2004). The GDS model—a rapid computational technique for the calculation of aircraft spray drift buffer distances. Computers and Electronics in Agriculture, 43(3), 235-250. https://doi.org/10.1016/j.compag.2004.02.001

Thom, A. S. (1975). Momentum, mass and heat exchange of plant communities. Vegetation and the Atmosphere, 4, 57-109.

Hartley, G. S., & Graham-Bryce, I. J. (1980). Physical principles of pesticide behaviour, 1(2). Academic Press Inc.(London) Ltd..

Holterman, H. J., Van de Zande, J. C., Porskamp, H. A. J., & Michielsen, J. M. G. P. (1998). IDEFICS: a physical model of spray drift from boom sprayers in agriculture. ILASS-Europe, Manchester.

Perry, R., Green, D. & Maloney, J. (1984). Perry's Chemical Engineers' Hand-book.

Reichard, D. L., Zhu, H., Fox, R. D., & Brazee, R. D. (1992). Wind tunnel evaluation of a computer program to model spray drift. Transactions of the ASAE, 35(3), 755-758. https://doi.org/10.13031/2013.28658

Bahrouni, H. (2010). Caractérisation de l’efficacité technique des systèmes de pulvérisation et des pertes de pesticides appliqués aux cultures basses dans les régions méditerranéennes : cas de la Tunisie. Doctorat Agronomie, Spécialité : Génie des procédés, Montpellier SupAgro et INAT

Xu, Z. G., Walklate, P. J., Rigby, S. G., & Richardson, G. M. (1998). Stochastic modelling of turbulent spray dispersion in the near-field of orchard sprayers. Journal of Wind Engineering and Industrial Aerodynamics, 74, 295-304. https://doi.org/10.1016/S0167-6105(98)00026-9

Belhadef, A. (2010). Contribution à la modélisation Eulérienne de l’atomisation pour la pulvérisation agricole. Thèse de doctorat, Mécanique des fluides. Université de Provence - Aix-Marseille I, 2010.

Goering, C. E., Bode, L. E., & Gebhardt, M. R. (1972). Mathematical modeling of spray droplet deceleration and evaporation. Transactions of the ASAE, 15(2), 220-0225. https://doi.org/10.13031/2013.37871

Williamson, R. E., & Threadgill, E. D. (1974). A simulation for the dynamics of evaporating spray droplets in agricultural spraying. Transactions of the ASAE, 17(2), 254-261. https://doi.org/10.13031/2013.36835

Holterman, H. J., Van De Zande, J. C., Porskamp, H. A. J., & Huijsmans, J. F. M. (1997). Modelling spray drift from boom sprayers. Computers and electronics in agriculture, 19(1), 1-22. https://doi.org/10.1016/S0168-1699(97)00018-5

Brown, R. B., & Sidahmed, M. M. (2001). Simulation of Spray Dispersal and Deposition from a Forestry Airblast Sprayer---Part II: Droplet Trajectory Model. Transactions of the ASAE, 44(1), 11-17. https://doi.org/10.13031/2013.2298

Asman, W., Jørgensen, A., Jensen, P. (2003). Dry deposition and spray drift of pesticides to nearby water bodies. Tech. rep., Danish Protection Environmental Agency

Ranz, W. E., & Marshall, W. R. (1952a). Evaporation from drops. Chemical Engineering Progress, 48, 41-146.

Ranz, W.E. & Marhsall Jr., W.R. (1952b). Evaporation from drops, part II. Chemical Engineering Progress 48 (4), 173-180.

Walklate, P. J. (1992). A simulation study of pesticide drift from an air-assisted orchard sprayer. Journal of Agricultural Engineering Research, 51, 263-283. https://doi.org/10.1016/0021-8634(92)80042-Q

Van Pul, W.A.J., Jacobs, C.M.J., Van Jaarsveld, J.A. (1996). Air Pollution Modelling and its Application. Ed. Gryning and Schiermeyer : XI. Plenum Press, New York, 203–212.

Persson, C., & Ullerstig, A. (1996). Model calculations of dispersion of lindane over Europe. SMHI 68.

Pekar, M., Van Pul, W. A. J., & Borrell, P. M. (1998). Modelling of lindane and PCBs transport in the European region. In Proceedings EUROTRAC symposium (Vol. 98) Garmisch-Partenkirchen. In press

Sinfort, C., & Vallet A. (2003). Modeling the Dispersion of Pesticides during Applications: Ingénieries-EAT, Special Issue. Technologies for sustainable agro ; 85-94.

Sinfort, C., & Bonicelli, B. (2011). Mesure et modélisation de la dispersion des pesticides dans l’air au voisinage des parcelles agricoles. Anses, Bulletin de veille scientifique n°14, Santé / Environnement / Travail, Juin 2011. 18-21

Hilz, E., & Vermeer, A. W. (2013). Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Protection, 44, 75-83. https://doi.org/10.1016/j.cropro.2012.10.020

Ganzelmeier, H., Rautmann, D., Spangenberg, R., Streloke, M. (1995). Studies on spray drift of plant protection products, Mitteilungen aus der Biologischen Bundesanstalt für Landund Forstwirtschaft, Berlin Dahlem.

Rautmann, D., Streloke, M., & Winkler, R. (1999, September). New basic drift values in the authorization procedure for plant protection products. In Workshop on risk management and risk mitigation measures in the context of authorization of plant protection products. 133-141. ISSN 0067-5849

FOCUS. (2007a). Landscape and mitigation factors. In: Aquatic Risk Assessment. Extended Summary and Recommendations, vol. 1, Report of the FOCUS Working Groupon Landscape and Mitigation Factors in Ecological Risk Assess- ment. EC Document Reference SANCO/10422/2005 V.2.0, 1-169.

FOCUS. (2007b). Landscape and mitigation factors. In: Aquatic Risk Assessment. Detailed Technical Reviews, vol. 2, Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment. EC Document Reference SANCO/10422/2005 V.2.0, 1-436.

Teske, M. E., & Thistle, H. W. (1999). Poultry a simulation of release height and wind speed effects for drift minimization. Transactions of the ASAE, 42(3), 583-591. doi: 10.13031/2013.13218

Piché, M. (2014). Acquisition de connaissances sur l’application de pesticides par voie aérienne – hélicoptère. Programme Prime-Vert, Sous-volet 3.1 – Approche régionale. 46p

Downloads

Published

2023-10-31

How to Cite

KOUADIO, S.-P., & Assidjo Nogbou Emmanuel. (2023). Review of the Approach to Modelling Pesticides Dispersion in Environment for Determining the Concentrations to Which Organisms are Exposed as Part of Risk Assessment. Journal of Applied Science &Amp; Process Engineering, 10(2), 94–108. https://doi.org/10.33736/jaspe.5489.2023