Optimisation of Electrical Discharge Machining Processing for AZ91 Magnesium Alloy using Coupled AHP-Taguchi Analyses-GA Method with the Rank Selection Approach

Authors

  • Meshach Chukwuebuka Ikedue University of Lagos, Lagos, Nigeria
  • John Rajan Department of Manufacturing Engineering, Vellore Institute of Technology, Vellore, India
  • Sunday Ayoola Oke University of Lagos, Lagos
  • Ebun Fasina Department of Computer Science, University of Lagos, Lagos, Nigeria
  • Babatunde Alade Sawyerr Department of Computer Science, University of Lagos, Lagos, Nigeria
  • Wasiu Oyediran Adedeji Osun State University

DOI:

https://doi.org/10.33736/jaspe.5162.2023

Keywords:

Genetic algorithm, optimisation, prioritisation, machinery, operation

Abstract

Despite being contemporary, the wire electrical discharge machining (EDM) industry is burdened with complicated and challenging problems. However, the double optimisation method involving Taguchi analyses and genetic algorithms is a powerful tool to help tackle some of these problems. This article evaluates the wire EDM process through a rank-based genetic algorithm coupled with the AHP-Taguchi analyses using the AZ91 magnesium alloy for the first time in the literature. The rank selection method was used at the selection stage of the operations. Six parameters, namely pulse on time, pulse off time, wire feed, wire tension, pulse current and gap voltage, were the process parameters. For all the methods, the total values were computed and compared for the selection, cross-over and mutation operations. It was found that the total values at the selection stage for each of the methods, namely AHP-Taguchi-GA, AHP-Taguchi-Pareto-GA and AHP-Taguchi-ABC-GA methods, were 2750, 4176 and 6306 (best value as Part A), respectively. For all the methods, there was a 25.35% improvement in total value at the cross-over stage compared with the selection stage. The improvement in the total values of the mutation over cross-over and mutation over selection was 53.84% and 92.84%, respectively. These improvement values were for the AHP-Taguchi-GA method but also turned out to be the same for the AHP-Taguchi-Pareto-GA and AHP-Taguchi-ABC methods. The principal advantage of the rank selection method introduced in the present study is to avoid quick convergence. This article is beneficial to the process engineers aimed at improving the wire electrical discharge machining process.

Author Biographies

Meshach Chukwuebuka Ikedue, University of Lagos, Lagos, Nigeria

He is an M.Sc. student

Ebun Fasina, Department of Computer Science, University of Lagos, Lagos, Nigeria

He is a Professor

Wasiu Oyediran Adedeji, Osun State University

He is a lecturer

References

Arora S., Pandey P., Singh A. & Kumar M. (2019). A perspective on process parameters in EDM using AHP approach, Journal of Emerging Technologies and Innovative Research, 6(6), 216-218. ISSN-2349-5162

Sidhu S.S., Ablyaz T.R., Bains P.S., Muratov K.R., Shykov E.S. & Shiryaev V.V. (2021). Parametric optimisation of electrical discharge machining of metal matrix composites using analytic hierarchy process, Micro-machines (Basel), 12(11), 1289. DOI.10.3339/mi12111289

Kazi, F. M., Waghmare, C. A., & Sohani, M. S. (2021). Multi-objective optimization of the aluminum powder-mixed EDM process using the GRA and TOPSIS techniques based on the fuzzy AHP approach. Journal of Applied Research and Technology, 19(5), 437-447. http://doi.org/10.22201/icat.24486736e.2021.19.5.1133

Duy Trinh, N., Nhat Tan, N., Quang, N. M., Thi Thieu Thoa, P., & Duc, L. A. (2022). Application of magnetic liquid slurries and fuzzy grey analysis in polishing nickel-phosphorus coated SKD11 steel. Particulate Science and Technology, 40(4), 401-414. Technology, https://doi.org/10.1080/02726351.2021.1948471

Nagaraju, N., Prakash, R. S., Kumar, G. V. A., & Ujwala, N. G. (2020). Optimization of electrical discharge machining process parameters for 17-7 PH stainless steel by using taguchi technique. Materials Today: Proceedings, 24, 1541-1551. https://doi.org/10.1016/j.matpr.2020.04.474

Manikandan, N., Binoj, J. S., Thejasree, P., Sasikala, P., & Anusha, P. (2021). Application of Taguchi method on wire electrical discharge machining of Inconel 625. Materials Today: Proceedings, 39, 121-125. https://doi.org/10.1016/j.matrp.2020.06.394

Kandpal, B. C., Kumar, J., & Singh, H. (2018). Optimization of electrical discharge machining AA6061/10% Al2O3 composite using Taguchi optimization technique. Materials Today: Proceedings, 5(9), 18946-18955. https://doi.org/10.1016/j.matpr.2018.06.245

Chandramouli, S., & Eswaraiah, K. (2018). Experimental investigation of EDM process parameters in machining of 17-4 PH Steel using taguchi method. Materials Today: Proceedings, 5(2), 5058-5067. https://doi.org/10.1016/j.matpr.2017.12.084

Gohil, V., & Puri, Y. M. (2018). Optimization of electrical discharge turning process using Taguchi-Grey relational approach. Procedia CIRP, 68, 70-75. https://doi.org/10.1016/j.procir.2017.12.024

Tajdeen, A., Khan, M. W., Basha, K. K., & Sakthivelmurugan, E. (2022). Experimental investigation and optimization of EDM process parameters on EN31 steel using genetic algorithm. Materials Today: Proceedings, 64, 821-827. https://doi.org/10.1016/j.matpr.2022.05.326

Pandey, A. K. (2019). Computer aided genetic algorithm based optimization of electrical discharge drilling in titanium alloy (grade-5) sheet. Materials Today: Proceedings, 18, 4869-4881. https://doi.org/10.1016/j.matrpr.2019.07.478

Nair, A., Kumanan, S., & Shanavas, K. P. (2022). Multi-performance optimization in wire EDM of Inconel 617 using GRA and genetic algorithm. Materials Today: Proceedings, 50, 1354-1366. https://doi.org/10.1016.jmatpr.2021.08.279

Rajesh, R., & Anand, M. D. (2012). The optimization of the electro-discharge machining process using response surface methodology and genetic algorithms. Procedia Engineering, 38, 3941-3950. https://doi.org/10.1016/j.proeng.2012.06.451

Dutta S. & Sarma D.K. (2022). Multi-objective optimisation of -EDM parameters for hole drilling of hastelloy C276 super alloy using response surface methodology and multi-objective genetic algorithm, GRP Journal of Manufacturing Science and Technology, 39, 115-133 https://doi.org/10.1016/j.cirpj.2022.07.011

Muniappan, A., Sriram, M., Thiagarajan, C., Bharathi Raja, G., & Shaafi, T. (2018). Optimization of WEDM process parameters on machining of AZ91 magnesium alloy using MOORA method. In IOP Conference Series: Materials Science and Engineering, 390, 012107. IOP Publishing. http://doi.org/10.1088/1757-899X/390/1/012107

Sivanandam, S. N., Deepa, S. N., Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms, 15-37. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73190-0_2

Bala, A., & Sharma, A. K. (2015, December). A comparative study of modified crossover operators. In 2015 third international conference on image information processing (ICIIP), 281-284. IEEE. https://doi.org/10.1109/ICIIP.2015.7414781

Ikedue M.C. & Oke S.A. (2023). Optimisation of wire electrical discharge machining parameters on AZ91 magnesium alloy using analytical hierarchy process-Taguchi based analyses, in press, Engineering Access.

Tien, D. H., Trung, D. D., Thien, N. V., & Nguyen, N. T. (2021). Multi-objective optimization of the cylindrical grinding process of scm440 steel using preference selection index method. Journal of Machine Engineering, 21(3), 110-123. https://doi.org/10.36897/jme/141607

Trung, D. D., Ba, N. N., & Tien, D. H. (2022). Application of the Curli method for multi-critical decision of grinding process. Journal of Applied Engineering Science, 20(3), 634-643. DOI: 10.5937/jaes0-35088

Downloads

Published

2023-10-31

How to Cite

Ikedue, M. C. ., John Rajan, Oke, S., Ebun Fasina, Babatunde Alade Sawyerr, & Adedeji, W. O. . (2023). Optimisation of Electrical Discharge Machining Processing for AZ91 Magnesium Alloy using Coupled AHP-Taguchi Analyses-GA Method with the Rank Selection Approach. Journal of Applied Science &Amp; Process Engineering, 10(2), 79–93. https://doi.org/10.33736/jaspe.5162.2023