An in-silico Evaluation of Some Schiff bases for Their Potency Against SARS-CoV-2 Main Protease, PASS Prediction and ADMET Studies

Authors

DOI:

https://doi.org/10.33736/jaspe.5133.2023

Keywords:

Schiff-base, SARS-CoV-2 Mpro, Molecular Docking, PASS and ADMET Analysis

Abstract

SARS-CoV-2 has created an agonizing pandemic situation all over the world. The inhibition of SARS-CoV-2 main protease (Mpro) by the blockage of viral replication is considered an important drug target to the many researchers working to discover specific drugs for COVID-19 treatment. Schiff bases being documented to possess antimicrobial properties might be investigated as the candidate against COVID-19. Bioactivities of some symmetrical bis-Schiff bases were evaluated using computational studies on the basis of binding affinity, PASS prediction and ADMET study. On the basis of binding affinity, it is concluded that among eighteen tested ligands 2, 5, 8, 16, 17 showed excellent, ligands 4, 6, 18 showed good and the remaining ligands showed moderate inhibition against SARS-CoV-2 Mpro (6LU7) compared to a prescribed anti-Covid-19 drug, hydroxychloroquine (HCQ). PASS prediction revealed some of Schiff bases to have good anti-carcinogenic, anti-tuberculosis, antifungal, and antiviral activities. ADMET study predicted them to be non-toxic and harmless indicating that Schiff bases may act as a promising drug candidate for the treatment of COVID-19.

References

Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology, 92(4), 418-423. https://doi.org/10.1002/jmv.25681

Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), 241-246. https://doi.org/10.1016/j.dsx.2020.03.011

Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel coronavirus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 39(12), 4362-4374. https://doi.org/10.1080/07391102.2020.1779818

Boopathi, S., Poma, A. B., & Kolandaivel, P. (2021). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 39(9), 3409-3418. https://doi.org/10.1080/07391102.2020.1758788

Grum-Tokars, V., Ratia, K., Begaye, A., Baker, S. C., & Mesecar, A. D. (2008). Evaluating the 3C-like protease activity of SARS-Coronavirus: recommendations for standardized assays for drug discovery. Virus Research, 133(1), 63-73. https://doi.org/10.1016/j.virusres.2007.02.015

Harcourt, B. H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K. M., Smith, C. M., ... & Baker, S. C. (2004). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. Journal of virology, 78(24), 13600-13612. https://doi.org/10.1128/JVI.78.24.13600-13612.2004

Osman, E. E. A., Toogood, P. L., & Neamati, N. (2020). COVID-19: living through another pandemic. ACS Infectious Diseases, 6(7), 1548-1552. https://doi.org/10.1021/acsinfecdis.0c00224

Yan, L., Velikanov, M., Flook, P., Zheng, W., Szalma, S., & Kahn, S. (2003). Assessment of putative protein targets derived from the SARS genome. FEBS letters, 554(3), 257-263. https://doi.org/10.1016/S0014-5793(03)01115-3

Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X. & Liu, D. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical infectious diseases, 71(15), 732-739. https://doi.org/10.1093/cid/ciaa237

Grimstein, M., Yang, Y., Zhang, X., Grillo, J., Huang, S. M., Zineh, I., & Wang, Y. (2019). Physiologically based pharmacokinetic modeling in regulatory science: an update from the US Food and Drug Administration’s Office of Clinical Pharmacology. Journal of pharmaceutical sciences, 108(1), 21-25. https://doi.org/10.1016/j.xphs.2018.10.033

Devaux, C. A., Rolain, J. M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. International journal of antimicrobial agents, 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938

Warren, T. K., Jordan, R., Lo, M. K., Ray, A. S., Mackman, R. L., Soloveva, V., ... & Bavari, S. (2016). Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 531(7594), 381-385. https://doi.org/10.1038/nature17180

Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., & Baric, R. S. (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature communications, 11(1), 222. https://doi.org/10.1038/s41467-019-13940-6

Uddin, M. N., Ahmed, S. S., & Alam, S. R. (2020). Biomedical applications of Schiff base metal complexes. Journal of Coordination Chemistry, 73(23), 3109-3149. https://doi.org/10.1080/00958972.2020.1854745

Awual, M. R. (2015). A novel facial composite adsorbent for enhanced copper (II) detection and removal from wastewater. Chemical Engineering Journal, 266, 368-375. https://doi.org/10.1016/j.cej.2014.12.094

Awual, M. R. (2017). New type mesoporous conjugate material for selective optical copper (II) ions monitoring & removal from polluted waters. Chemical Engineering Journal, 307, 85-94. https://doi.org/10.1016/j.cej.2016.07.110

Awual, M. R. (2017). Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chemical Engineering Journal, 307, 456-465. https://doi.org/10.1016/j.cej.2016.08.108

Awual, M. R., Rahman, I. M., Yaita, T., Khaleque, M. A., & Ferdows, M. (2014). pH dependent Cu (II) and Pd (II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chemical Engineering Journal, 236, 100-109. https://doi.org/10.1016/j.cej.2013.09.083

Awual, M. R., Hasan, M. M., Khaleque, M. A., & Sheikh, M. C. (2016). Treatment of copper (II) containing wastewater by a newly developed ligand based facial conjugate materials. Chemical Engineering Journal, 288, 368-376. https://doi.org/10.1016/j.cej.2015.11.108

Awual, M. R., & Hasan, M. M. (2019). A ligand based innovative composite material for selective lead (II) capturing from wastewater. Journal of Molecular Liquids, 294, 111679. https://doi.org/10.1016/j.molliq.2019.111679

INA, F., & SSBE, A. (2021). COVID vaccines and kids: five questions as trials begin. Nature, 592. doi: https://doi.org/10.1038/d41586-021-01061-4

Kupferschmidt K. (2021) New coronavirus variants could cause more reinfections, require updated vaccines. doi:10.1126/science.abg6028

Chen, L. R., Wang, Y. C., Lin, Y. W., Chou, S. Y., Chen, S. F., Liu, L. T., Wu, Y.T., Kuo, C.J & Juang, S. H. (2005). Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorganic & Medicinal Chemistry Letters, 15(12), 3058-3062. https://doi.org/10.1016/j.bmcl.2005.04.027

Mojzych, M., & Sebela, M. (2015). Synthesis and biological activity evaluation of schiff bases of 5-acyl-1, 2, 4-triazine. Journal of the Chemical Society of Pakistan, 37(2). ISSN: 0253-5106

Uddin, M. N., Amin, M. S., Rahman, M. S., Khandaker, S., Shumi, W., Rahman, M. A., & Rahman, S. M. (2021). Titanium (IV) complexes of some tetra‐dentate symmetrical bis‐Schiff bases of 1, 6‐hexanediamine: Synthesis, characterization, and in silico prediction of potential inhibitor against coronavirus (SARS‐CoV‐2). Applied Organometallic Chemistry, 35(1), e6067. https://doi.org/10.1002/aoc.6067

Uddin, M. N., Chowdhury, D. A., & Rony, M. M. (2014). Complexes of Schiff bases derived from 2-hydroxyaldehyde and propane-1, 2-diamine: synthesis, characterization and antibacterial screening. Am J chem appl, 1, 12-18. ISSN: 2381-4535

Chowdhury DA, Uddin MN, Chowdhury GK. (2006) Synthesis and characterization of some dioxomolybdenum(VI) complexes of Schiff bases with ONNO donor ligands. The Chittagong Univ. J. Sci., 30(1):85 - 88. ISSN 1561-1167

Uddin, M. N., Salam, M. A., & Siddique, M. A. B. (2014). Complexes of VO3+ with dibasic tetradentate Schiff bases and their microbial studies. American Journal of Chemistry and Applications, 1(2), 19-27. ISSN Online: 2381-4535

Gleeson, M. P., & Gleeson, D. (2009). QM/MM calculations in drug discovery: a useful method for studying binding phenomena?. Journal of chemical information and modeling, 49(3), 670-677. https://doi.org/10.1021/ci800419j

Hertwig, R. H., & Koch, W. (1997). On the parameterization of the local correlation functional. What is Becke-3-LYP?. Chemical Physics Letters, 268(5-6), 345-351. https://doi.org/10.1016/S0009-2614(97)00207-8

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M, Cheeseman JR, et al. (2009) Gaussian 09, Revision D.01. Inc. Wallingford, CT.

Pearson, R. G. (1995). The HSAB principle—more quantitative aspects. Inorganica Chimica Acta, 240(1-2), 93-98. https://doi.org/10.1016/0020-1693(95)04648-8

Pearson, R. G. (1986). Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences, 83(22), 8440-8441. https://doi.org/10.1073/pnas.83.22.8440

Sussman, J. L., Lin, D., Jiang, J., Manning, N. O., Prilusky, J., Ritter, O., & Abola, E. E. (1998). Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallographica Section D: Biological Crystallography, 54(6), 1078-1084. https://doi.org/10.1107/S0907444998009378

DeLano WL. (2002) The PyMOL Molecular Graphics System. Delano Scientific, San Carlos. http//www.pymol.org.

Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. electrophoresis, 18(15), 2714-2723. https://doi.org/10.1002/elps.1150181505

Uzzaman, M., & Uddin, M. N. (2019). Optimization of structures, biochemical properties of ketorolac and its degradation products based on computational studies. DARU Journal of Pharmaceutical Sciences, 27, 71-82. https://doi.org/10.1007/s40199-019-00243-w

Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols, 243-250. https://doi.org/10.1007/978-1-4939-2269-7_19

Version ADS 4.0. (2017) Accelrys, San Diego, USA.

Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50, 444-457. https://doi.org/10.1007/s10593-014-1496-1

Khurana, N., Ishar, M. P. S., Gajbhiye, A., & Goel, R. K. (2011). PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice. European journal of pharmacology, 662(1-3), 22-30. https://doi.org/10.1016/j.ejphar.2011.04.048

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P.W. & Tang, Y. (2012). admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. https://doi.org/10.1021/ci300367a

Garbett, N. C., & Chaires, J. B. (2012). Thermodynamic studies for drug design and screening. Expert opinion on drug discovery, 7(4), 299-314. https://doi.org/10.1517/17460441.2012.666235

Lien, E. J., Guo, Z. R., Li, R. L., & Su, C. T. (1982). Use of dipole moment as a parameter in drug–receptor interaction and quantitative structure–activity relationship studies. Journal of pharmaceutical sciences, 71(6), 641-655. https://doi.org/10.1002/jps.2600710611

Sato, R., Vohra, S., Yamamoto, S., Suzuki, K., Pavel, K., Shulga, S., Blame, Y. & Kurita, N. (2020). Specific interactions between tau protein and curcumin derivatives: Molecular docking and ab initio molecular orbital simulations. Journal of Molecular Graphics and Modelling, 98, 107611. https://doi.org/10.1016/j.jmgm.2020.107611

Saravanan S, Balachandran V. (2014) Quantum chemical studies, natural bond orbital analysis and thermodynamic function of 2,5-dichlorophenylisocyanate.Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 120:351-364. https://doi.org/10.1016/j.saa.2013.10.042

Hagar, M., Ahmed, H. A., Aljohani, G., & Alhaddad, O. A. (2020). Investigation of some antiviral N-heterocycles as COVID 19 drug: molecular docking and DFT calculations. International Journal of Molecular Sciences, 21(11), 3922. https://doi.org/10.3390/ijms21113922

Azam, F., Alabdullah, N. H., Ehmedat, H. M., Abulifa, A. R., Taban, I., & Upadhyayula, S. (2018). NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer’s disease: An investigation by docking, molecular dynamics, and DFT studies. Journal of Biomolecular Structure and Dynamics, 36(8), 2099-2117. https://doi.org/10.1080/07391102.2017.1338164

Murray JS, Politzer P. (2003) In Comput. Med. Chem. for Drug Discovery, CRC Press, pp. 231–254.

Noureddine, O., Issaoui, N., & Al-Dossary, O. (2021). DFT and molecular docking study of chloroquine derivatives as antiviral to coronavirus COVID-19. Journal of King Saud University-Science, 33(1), 101248. https://doi.org/10.1016/j.jksus.2020.101248

Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 56(2), 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012

Narkhede, R. R., Cheke, R. S., Ambhore, J. P., & Shinde, S. D. (2020). The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology, 4(3), 185-195. DOI: 10.14744/ejmo.2020.31503

Uddin, M. N., Siddique, Z. A., Akter, J., Rahman, M. S., Shumi, W., & Nasiruddin, M. (2022). Synthesis, molecular modeling, and biomedical applications of oxovanadium (IV) complexes of Schiff bases as a good SARS-CoV-2 inhibitor. Inorganic and Nano-Metal Chemistry, 52(6), 819-834. https://doi.org/10.1080/24701556.2021.1952261

Uzzaman, M., Junaid, M., & Uddin, M. N. (2020). Evaluation of anti-tuberculosis activity of some oxotitanium (IV) Schiff base complexes; molecular docking, dynamics simulation and ADMET studies. SN Applied Sciences, 2, 1-11. https://doi.org/10.1007/s42452-020-2644-0

Walum, E. (1998). Acute oral toxicity. Environmental health perspectives, 106(suppl 2), 497-503. https://doi.org/10.1289/ehp.98106497

Gleich, A., Kaiser, B., Honscha, W., Fuhrmann, H., & Schoeniger, A. (2019). Evaluation of the hepatocyte-derived cell line BFH12 as an in vitro model for bovine biotransformation. Cytotechnology, 71, 231-244. https://doi.org/10.1007/s10616-018-0279-4

Sanguinetti, M. C., & Tristani-Firouzi, M. (2006). hERG potassium channels and cardiac arrhythmia. Nature, 440(7083), 463-469. https://doi.org/10.1038/nature04710

Downloads

Published

2023-04-30

How to Cite

Uddin, M. N., & Rahman, M. S. . (2023). An in-silico Evaluation of Some Schiff bases for Their Potency Against SARS-CoV-2 Main Protease, PASS Prediction and ADMET Studies. Journal of Applied Science &Amp; Process Engineering, 10(1), 29–48. https://doi.org/10.33736/jaspe.5133.2023