In Silico Testing of Some Protected Galactopyranose as SARS-CoV-2 Main Protease Inhibitors

Keywords: COVID-19, Protected galactose, Molecular docking, Remdesivir, Sugar esters


An outbreak of novel Coronavirus disease (COVID-19 or 2019-nCoV) due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has already demonstrated a fatal death toll all over the world. To cure this viral infection, a number of compounds of different categories have been investigated in silico. Some of the compounds showed better binding energy with COVID-19-related proteins. However, until now there is no appropriate drug except a vaccine. It was found that many antifungal drugs are used for COVID-19 patients in hospitals. Many monosaccharide esters have been reported to have antifungal potential. Thus, in the present study, some protected galactopyranose esters are chosen for molecular docking with SARS-CoV-2 main proteases (PDB id: 7BQY and 6LU7). A docking study revealed that galactopyranose esters 5-8 have very good docking scores (-8.4 to -6.5 kcal/mol) compared to the standard drugs azithromycin, remdesivir, and hydroxychloroquine. To explain such good scores interaction between amino acid residues of proteins and compounds in their docked complexes are calculated and duly discussed in this study.


Peng, Z., Xing-Lou, Y., Xian-Guang, W., Ben, H., Lei, Z., & Wei, Z. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273.

Dhumad, A.M., Majeed, H.J., Harismah, K., & Zandi, H. (2021). In silico Approach on ribavirin inhibitors for COVID-19 main protease. Bioint. Res. Appl. Chem., 11(6), 13924–13933.

Rout, J., Swain, B.C., & Tripathy, U. (2022) In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2, Journal of Biomolecular Structure and Dynamics, 40(2), 860–874,

Rashdan, H.R.M, Abdelmonsef, A.H., Abou-Krisha, M.M., & Yousef, T.A. (2022). Synthesis and identification of novel potential thiadiazole based molecules containing 1,2,3-triazole moiety against COVID-19 main protease through structure-guided virtual screening approach. Bioint. Res. Appl. Chem., 12(6), 8258–8270.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020). A novel Coronavirus from patients with pneumonia in China, 2019. New Engl. J. Med., 382, 727–733.

Prescott, H.C. (2021). Outcomes for patients following hospitalization for COVID-19. JAMA. 325(15), 1511–1512.

Kordzadeh, A., & Saadatabadi, A.R. (2022). Effects of the temperature and the pH on the main protease of SARS-CoV-2: A molecular dynamics simulation study. Bioint. Res. Appl. Chem., 12(6), 7239–7248.

Zhang, L., Hou, J., Ma, F.Z. et al. (2021). The common risk factors for progression and mortality in COVID-19 patients: a meta-analysis. Arch. Virol., 166, 2071–2087.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497–506.

Mehta, P., McAuley, D.F., Brown, M., Sanchez, E., Tattersall, R.S., Manson, J.J., et al. (2020).COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 395, 1033–1034.

Chen, C., Zhang, Y., Huang, J., Yin, P., Cheng, Z., Wu, J., Chen, S., Zhang, Y., Chen, B., Lu, M., Luo, Y., Ju, L., Zhang, J., & Wang, X. (2020). Favipiravir versus Arbidol for COVID-19: A randomized clinical trial. MedRxiv.

Md Nayeem, S., Sohail, E. M., Srihari, N. V., Indira, P., & Srinivasa Reddy, M. (2021). Target SARS-CoV-2: theoretical exploration on clinical suitability of certain drugs. Journal of Biomolecular Structure and Dynamics, 1-8.

Hu, B., Guo, H., Zhou, P., & Shi, Z.-L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 19, 141–154.

Shah, A.S., Gribben, C., Bishop, J., Hanlon, P., Caldwell, D., Wood, R., Reid, M., McMenamin, J., Goldberg, D., Stockton, D., et al. (2021). Effect of vaccination on transmission of SARS-CoV-2. New Engl. J. Med., 385, 1718–1720.

Tarighi, P., Eftekhari, S., Chizari, M., Sabernavaei, M., Jafari, D., & Mirzabeigi, P. (2021). A review of potential suggested drugs for coronavirus disease (COVID-19) treatment. Eur. J. Pharmacol., 895, 173890.

Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – An in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 39, 4362–4374.

Fischer, W., Eron, J.J., Holman, W., Cohen, M.S., Fang, L., Szewczyk, L.J., Sheahan, T.P., Baric, R., Mollan, K.R., Wolfe, C.R., et al. (2021). Molnupiravir, an Oral Antiviral Treatment for COVID-19. medRxiv,

Rothan, H.A., Stone, S., Natekar, J., Kumari, P., Arora, K., & Kumar, M. (2020). The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology, 547, 7–11.

Cirri, D., Marzo, T., Tolbatov, I., Marrone, A., Saladini, F., Vicenti, I., Dragoni, F., Boccuto, A., & Messori, L. (2021). In vitro anti-SARS-CoV-2 activity of selected metal compounds and potential molecular basis for their actions based on computational study. Biomolecules, 11, 1858.

Lee, Y.-K., Chang, W.-C., Prakash, E., Peng, Y.-J., Tu, Z.-J., Lin, C.-H., Hsu, P.-H., & Chang, C.-F. (2022). Carbohydrate Ligands for COVID-19 spike proteins. Viruses, 14, 330.

Kasthuri, M., Li, C., Verma, K., Russell, O.O., Dickson, L., McCormick, L., Bassit, L., Amblard, F., & Schinazi, R.F. (2020). Synthesis of 4'-substituted-2'-deoxy-2'-alpha-fluoro nucleoside analogs as potential antiviral agents. Molecules, 25, 1258.

Sari, O., Bassit, L., Gavegnano, C., McBrayer, T.R., McCormick, L., Cox, B., Coats, S.J., Amblard, F., & Schinazi, R.F. (2017). Synthesis and antiviral evaluation of 2',2',3',3'-tetrafluoro nucleoside analogs. Tetrahedron Lett., 58, 642–644.

Schultz, D.C., Johnson, R.M., Ayyanathan, K. et al. (2022). Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature, 604, 134–140.

Zenchenko, A.A., Drenichev, M.S., Il’icheva, I.A., & Mikhailov, S.N. (2021). Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action. Molecular Biology, 55, 786–812.

Kabir, A.K.M.S., Matin, M.M., Mridha, M.A.U., & Shahed, S.M. (1998). Antifungal activities of some methyl 6-O-trityl-α-D-mannopyranosides, The Chittagong University Journal of Science, 22(1), 41–46. ISSN: 1561-1167

Matin, M.M., & Ibrahim, M. (2010). Synthesis of some methyl 4-O-octanoyl-α-L-rhamnopyranoside derivatives. Journal of Applied Sciences Research, 6(10), 1527–1532. ISSN: 1816-157X

Matin, M.M., & Chakraborty, P. (2020). Synthesis, spectral and DFT characterization, PASS predication, antimicrobial, and ADMET studies of some novel mannopyranoside esters. Journal of Applied Science & Process Engineering, 7(2), 572–586. e-ISSN: 2289-7771

Matin, M.M., Bhuiyan, M.M.H., Hossain, M.M., & Roshid M.H.O. (2015). Synthesis and comparative antibacterial studies of some benzylidene monosaccharide benzoates. Journal of the Turkish Chemical Society Section A: Chemistry, 2(4), 12–21. e-ISSN: 2149-0120

Rahman, M.A., Chakma, U., Kumer, A., Rahman, M.R., & Matin, M.M. (2023). Uridine-derived 4-aminophenyl 1-thioglucosides: DFT optimized FMO, ADME, and antiviral activities study. Biointerface Research in Applied Chemistry, 13(1), 52.

Kabir, A.K.M.S., Matin, M.M., & Kawsar, S.M.A. (1998). Synthesis and antibacterial activities of some uridine derivatives. The Chittagong University Journal of Science, 22(1), 13–18. ISSN: 1561-1167

Kabir, A.K.M.S., Matin, M.M., Sanaullah, A.F.M., Sattar, M.A., & Rahman, M.S. (2001). Antimicrobial activities of some lyxoside derivatives. Bangladesh Journal of Microbiology, 18(1), 89–95. ISSN: 1011-9981

Kabir, A.K.M.S., Matin, M.M., Bhuiyan, M.M.R., Rahim, M.A., & Rahman, M.S. (2005). Biological evaluation of some monosaccharide derivatives. International Journal of Agriculture & Biology, 7(2), 218-221. ISSN: 1814-9596

Hanee, U., Rahman, M.R., & Matin, M.M. (2021). Synthesis, PASS, in silico ADMET, and thermodynamic studies of some galactopyranoside esters. Physical Chemistry Research, 9(4), 591-603.

Siddikey, F., Roni, M.A.H., Kumer, A., Chakma, U., & Matin, M.M. (2022). Computational investigation of Betalain derivatives as natural inhibitor against food borne bacteria. Current Chemistry Letters, 11(3), 309–320.

Rahman, M.A., Matin, M.M., Kumer, A., Chakma, U., & Rahman, M.R. (2022). Modified D-Glucofuranoses as New Black Fungus Protease Inhibitors: Computational Screening, Docking, Dynamics, and QSAR Study. Physical Chemistry Research, 10(2), 195–209.

Kumer, A., Chakma, U., & Matin, M.M. (2022). Bilastine based drugs as SARS-CoV-2 protease inhibitors: Molecular docking, dynamics, and ADMET related studies. Orbital: The Electronic Journal of Chemistry, 14(1), 15–23.

Zago, E., Joly, N., Chaveriat, L., Vincent Lequart, V., & Martin, P., (2021). Enzymatic synthesis of amphiphilic carbohydrate esters: Influence of physicochemical and biochemical parameters, Biotechnology Reports, 30, e00631,

Kim, H. J., Kang, S. H., Choi, S. S., & Kim, E. S. (2017). Redesign of antifungal polyene glycosylation: engineered biosynthesis of disaccharide-modified NPP. Applied Microbiology & Biotechnology, 101, 5131–5137.

Kabir, A.K.M.S., & Matin, M.M. (1994). Regioselective acylation of a derivative of L-rhamnose using the dibutyltin oxide method. Journal of the Bangladesh Chemical Society, 7(1), 73–79. ISSN: 1022-016X

Matin, M.M. (2008). Synthesis of D-glucose derived oxetane: 1,2-O-isopropylidene-4-(S)-3-O,4-C-methylene-5-O-methanesulfonyl-β-L-threo-pento-1,4-furanose. Journal of Applied Sciences Research, 4(11), 1478–1482. ISSN: 1816-157X

Kabir, A.K.M.S., Matin, M.M., Hossain, A., & Sattar, M.A. (2003). Synthesis and antimicrobial activities of some rhamno-pyranoside derivatives. Journal of the Bangladesh Chemical Society, 16(2), 85–93. ISSN: 1022-016X

Matin, M.M. (2006). Synthesis of some silyl protected 1,4-galactonolactone derivatives. Journal of Applied Sciences Research, 2(10), 753–756. ISSN: 1816-157X

Kumbhar, P.S., Pandya, A.K., Manjappa, A.S., Disouza, J.I., & Patravale, V.B. (2021). Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. Carbohydrate Polymer Technologies and Applications, 2, 100052.

Islam, N, Islam, M.D., Rahman, M.R., & Matin, M.M. (2021). Octyl 6-O-hexanoyl-β-D-glucopyranosides: Synthesis, PASS, antibacterial, in silico ADMET, and DFT studies. Current Chemistry Letters, 10(4), 413–426.

Matin, M.M., Uzzaman, M., Chowdhury, S.A., & Bhuiyan, M.M.H. (2022). In vitro antimicrobial, physicochemical, pharmacokinetics, and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 40(8), 3668-3680.

Matin, P., Matin, M.M., Rahman, M.R., & Kumer, A. (2023). Synthesis, antifungal, and molecular docking studies of some new di-O-isopentanoyl glucopyranosides. Physical Chemistry Research, 11(1), 149–157.

Kumer, A., Chakma, U., Matin, M.M., Akash, S., Chando, A., & Howlader, D. (2021). The computational screening of inhibitor for black fungus and white fungus by D-glucofuranose derivatives using in silico and SAR study. Organic Communications, 14(4), 305–322.

Matin, M. M., Bhuiyan, M. M. H., Debnath, D. C., & Manchur, M. A. (2013). Synthesis and comparative antimicrobial studies of some acylated D-glucofuranose and D-glucopyranose derivatives. International Journal of Biosciences, 3(8), 279–287.

Matin, P., Rahman, M.R., Huda, D., Bakri, M.K.B., Uddin, J., Yurkin, Y., Burko, A., Kuok, K.K., & Matin, M.M. (2022). Application of synthetic acyl glucopyranosides for white-rot and brown-rot fungal decay resistance in aspen and pine wood. BioResources, 17(2), 3025–3041.

James, A.A., Rahman, M.R., Huda, D., Aqlan, M.F.M., Matin, M.M., Bakri, M.K.B., Kuok, K.K., Rahman, M.M. (2022). Synthesis and characterization of novel nano-carbon mixture from Dabai (Canarium odontophyllum) nutshell. BioResources, 17(3), 4452–4469.

Khui, P.L.N., Rahman, M.R., Matin, M.M., & Bakri, M.K.B. (2022). Recycled Rubber Waste Plastic and its Composites. In: Recycled Plastic Biocomposites, Rahman, M.R. & Bakri, M.K.B. (Eds), 1st Ed, Woodhead Publishing/Elsevierpp 147–163.

Matin, P., Hanee, U., Alam, M.S., Jeong, J.E., Matin, M.M., Rahman, M.R., Mahmud, S., Alshahrani, M.M., & Kim, B. (2022). Novel galactopyranoside esters: Synthesis, mechanism, in vitro antimicrobial evaluation and molecular docking studies. Molecules, 27(13), 4125.

Matin, M.M., & Azad, A.K.M.S. (2006). Synthesis of some protected 6-O-acyl-galactopyranose derivatives. Journal of Applied Sciences Research, 2(12), 1199–1202. ISSN: 1816-157X

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., et al. (2013). Gaussian 09W, Revision D.01. Gaussian, Inc., Wallingford CT.

Lu, L., Hu, H., Hou, H., & Wang, B. (2013). An improved B3LYP method in the calculation of organic thermochemistry and reactivity. Computational and Theoretical Chemistry, 1015, 64-71.

Veronika Temml, Zsofia Kutil, Z. (2021). Structure-based molecular modeling in SAR analysis and lead optimization. Computational and Structural Biotechnology Journal, 19, 1431-1444.

Matin, M. M., Ibrahim, M., Anisa, T. R., & Rahman, M. R. (2022). Synthesis, characterization, in silico optimization, and conformational studies of methyl 4-O-palmitoyl-α-L-rhamnopyranosides. Malaysian Journal of Science, 41(1), 91-105.

Torneri, A., Libin, P., Vanderlocht, J., Vandamme, A.-M., Neyts, J., & Hens, N. (2020). A prospect on the use of antiviral drugs to control local outbreaks of COVID-19. BMC Medicine, 18(191).

Matin, M. M., Bhuiyan, M. M. H., Kibria, S. M., & Hasan, M. S. (2022). Synthesis, PASS predication of antimicrobial activity and pharmacokinetic properties of hexanoyl galactopyranosides and experimental evaluation of their action against four human pathogenic bacteria and four fungal strains. Pharmaceutical Chemistry Journal, 56(5), 627-637.

Ristovski, J.T., Matin, M.M., Kong, R., Kusturica, M.P., Zhang, H. (2022). In vitro testing and computational analysis of specific phytochemicals with antiviral activities considering their possible applications against COVID-19. South African Journal of Botany, 1–11.

Narayanan, A., Narwal, M., Majowicz, S.A. et al. (2022). Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Communications Biology, 5, 169.

Niknam, Z., Jafari, A., Golchin, A., Pouya, F.D., Nemati, M., Rezaei-Tavirani, M., & Rasmi, Y. 2022). Potential therapeutic options for COVID-19: an update on current evidence. Eur. J. Med. Res., Vol.27, No.6.

Mirtaleb, M.S., Mirtaleb, A.H., Nosrati, H., Heshmatnia, J., Falak, R., & Emameh, R.M. (2021). Potential therapeutic agents to COVID-19: An update review on antiviral therapy, immunotherapy, and cell therapy, Biomedicine & Pharmacotherapy, 138, 111518.

How to Cite
Azad, A. K., Islam, M. N., Chowdhury, M. A. I., & Kabir, E. (2022). In Silico Testing of Some Protected Galactopyranose as SARS-CoV-2 Main Protease Inhibitors. Journal of Applied Science & Process Engineering, 9(2), 1281-1294.