Characterisation of Flexural Properties of Glass Fibre/Pineapple Leaf Fibre (PALF) Hybrid Composite

Authors

  • Mawarnie Ismail Mechanical Engineering Department, Politeknik Mukah, 96400 Mukah, Sarawak, Malaysia
  • Marlina Mohamad Mechanical Engineering Department, Politeknik Mukah, 96400 Mukah, Sarawak, Malaysia
  • Leanna Mohd Yunos Mechanical Engineering Department, Politeknik Mukah, 96400 Mukah, Sarawak, Malaysia
  • Mohammad Hazim Mohamad Hamdan Faculty of Engineering and Computing, First City University College, 47800 Petaling Jaya, Selangor, Malaysia

DOI:

https://doi.org/10.33736/jaspe.4602.2022

Keywords:

Pineapple leaf fibre (PALF), hybrid composite, flexural strength, morphology

Abstract

The use of natural resource materials has gained awareness among industries recently. Today, replacing the material with something more environmentally friendly, especially from waste natural products like pineapple leaf fibre (PALF), is a top concern. This research aims to look at the flexural properties of a glass fibre/pineapple leaf fibre (PALF) hybrid composite. The hand layup and cold compression methods were used to manufacture the hybrid composite plates, which provide 30 wt% of fibre and 70 wt% of the matrix. The form of the hybrid composite was unidirectional with a size of 30 cm 30 cm 3 cm and sandwich stacking. Universal testing equipment was used to conduct the flexural test. With a flexural strength of 290.11 MPa, 5 wt% PALF and 25 wt% bi-directional glass fibre were found to have the maximum flexural strength.

References

Siregar, J. P., Jaafar, J., Cionita, T., Jie, C. C., Bachtiar, D., Rejab, M. R. M., & Asmara, Y. P. (2019). The effect of maleic anhydride polyethylene on mechanical properties of pineapple leaf fibre reinforced polylactic acid composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 101-112. https://doi.org/10.1007/s40684-019-00018-3

Quanjin, M., Rejab, M., Halim, Q., Merzuki,M., & Darus, M. (2020). Experimental investigation of the tensile test using digital image correlation (DIC) method. Materials Today: Proceedings 2020. https://doi.org/10.1016/j.matpr.2019.12.072

Quanjin, M., Salim, M., Rejab, M., Bernhardi, O.-E., & Nasution, A.Y. (2019). Quasi-static crushing response of square hybrid carbon/aramid tube for automotive crash box application. Materials Today:Proceedings 2019. https://doi.org/10.1016/j.matpr.2019.10.161

Quanjin, M. A., M Sahat, I., Mat Rejab, M. R., Abu Hassan, S., Zhang, B., & Merzuki, M. N. (2019). The energy-absorbing characteristics of filament wound hybrid carbon fiber-reinforced plastic/polylactic acid tubes with different infill pattern structures. Journal of Reinforced Plastics and Composites, 38(23-24), 1067-1088. https://doi.org/10.1177%2F0731684419868018

Guna, V., Ilangovan, M., Rather, M. H., Giridharan, B. V., Prajwal, B., Krishna, K. V., ... & Reddy, N. (2020). Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building engineering, 27, 100991. doi:https://doi.org/10.1016/j.jobe.2019.100991.

Zin, M. H., Abdan, K., & Norizan, M. N. (2019). The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite. In Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites (pp. 1-17). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102291-7.00001-0

Ribeiro Filho, S. L. M., Oliveira, P. R., Panzera, T. H., & Scarpa, F. (2019). Impact of hybrid composites based on rubber tyres particles and sugarcane bagasse fibres. Composites Part B: Engineering, 159, 157-164. https://doi.org/10.1016/j.compositesb.2018.09.054.

Ramnath, B. V., Kokan, S. J., Raja, R. N., Sathyanarayanan, R., Elanchezhian, C., Prasad, A. R., & Manickavasagam, V. M. (2013). Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Materials & Design, 51, 357-366. https://doi.org/10.1016/j.matdes.2013.03.102

Sanjay, M. R., Arpitha, G. R., & Yogesha, B. (2015). Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: A review. Materials today: proceedings, 2(4-5), 2959-2967. https://doi.org/10.1016/j.matpr.2015.07.264

Kengkhetkit, N., & Amornsakchai, T. (2012). Utilisation of pineapple leaf waste for plastic reinforcement: 1. A novel extraction method for short pineapple leaf fiber. Industrial Crops and Products, 40, 55-61. doi:https://doi.org/10.1016/j.indcrop.2012.02.037

Kulkarni, A. A., Vanakudre, V. M. (2017). Preparation and Analysis of Hybrid Epoxy Composites. IJESC, 7.

Mohamad Hamdan, M. H., Siregar, J. P., Thomas, S., Jacob, M. J., Jaafar, J., & Tezara, C. (2019). Mechanical performance of hybrid woven jute–roselle-reinforced polyester composites. Polymers and Polymer Composites, 27(7), 407-418. doi:10.1177/0967391119847552.

Ahmed, M., Kumar, P. V., Shivanand, H. K., & Muzammil, S. B. (2015). A study on flexural strength of hybrid polymer composite materials (e glass fibre-carbon fibre-graphite) on different matrix material by varying its thickness. Education, 2020. ISSN 0976 – 6359

Ismail, M., Rejab, M. R. M., Siregar, J. P., Muhamad, Z., & Quanjin, M. (2019, August). Tensile properties of hybrid woven glass fibre/PALF reinforced polymer composite. In Proceedings of the international manufacturing engineering conference & The Asia Pacific conference on manufacturing systems (pp. 448-454). Springer, Singapore. DOI: 10.1007/978-981-15-0950-6_68

Kumar, K. K., Karunakar, C., & ChandraMouli, B. (2018). Development and Characterization of Hybrid Fibres Reinforced Composites Based on Glass and Kenaf Fibers. Materials Today: Proceedings, 5(6), 14539-14544. https://doi.org/10.1016/j.matpr.2018.03.043.

Manral, A., Ahmad, F., & Chaudhary, V. (2020). Static and dynamic mechanical properties of PLA bio-composite with hybrid reinforcement of flax and jute. Materials Today: Proceedings, 25, 577-580. https://doi.org/10.1016/j.matpr.2019.07.240.

Rana, R. S., Rana, S., & Purohit, R. (2017). Characterization of properties of epoxy sisal/glass fiber reinforced hybrid composite. Materials Today: Proceedings, 4(4), 5445-5451. https://doi.org/10.1016/j.matpr.2017.05.056.

de Oliveira Filho, G. C., de Sousa Mota, R. C., da Conceicao, A. C. R., Leao, M. A., & de Araujo Filho, O. O. (2019). Effects of hybridization on the mechanical properties of composites reinforced by piassava fibers tissue. Composites Part B: Engineering, 162, 73-79. doi:https://doi.org/10.1016/j.compositesb.2018.10.050.

D790-03, A. (2003). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA.

Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. R., & Hoque, M. E. (2015). A review on pineapple leaves fibre and its composites. International Journal of Polymer Science. https://doi.org/10.1155/2015/950567

Downloads

Published

2022-04-30

How to Cite

ISMAIL, M., Mohamad, M. ., Mohd Yunos, L. ., & Mohamad Hamdan, M. H. . (2022). Characterisation of Flexural Properties of Glass Fibre/Pineapple Leaf Fibre (PALF) Hybrid Composite. Journal of Applied Science &Amp; Process Engineering, 9(1), 1149–1156. https://doi.org/10.33736/jaspe.4602.2022