Evaluation of Heterocyclic Aromatic Compound Dye (Methylene Blue) on Chitosan Adsorbent Sourced from African Snail Shell: Modelling and Optimization Studies

  • Victor Ehigimetor Bello Department of Chemical and Petroleum Engineering, University of Lagos, Akoka-Yaba, Lagos State 101017, Nigeria
  • Olaosebikan Abidoye Olafadehan Department of Chemical and Petroleum Engineering, University of Lagos, Akoka-Yaba, Lagos State 101017, Nigeria https://orcid.org/0000-0002-1796-6552
Keywords: ANOVA, Response Surface Methodology (RSM), Artificial Neural Network (ANN), Genetic Algorithm (GA)


In this article, the modelling and optimization of five operational process parameters involving initial concentration, adsorbent dosage, contact time, temperature and pH of the solution as it affects the treatment of aqueous solution contaminated with methylene blue, a heterocyclic aromatic compound, on chitosan sourced from African Snail Shell were studied using response surface methodology (RSM) and artificial neural network (ANN) techniques coupled with genetic algorithm. The single and interactive effects of the variables were examined by way of analysis of variance (ANOVA). A comparison of the model techniques was done and an evaluation was carried out with some selected error functions. Both modelling and optimization tools performed creditably well. However, the hybrid ANN-GA proved to be a superior modelling and optimization technique with excellent generalization ability which gave an average absolute deviation between the experimental and predicted data of both response variables considered. The insightful relative importance of the process variables based on the renowned Garson and Olden’s algorithm methods coupled with step by step approach initiated in the Matlab environment were equally investigated. The findings from this study revealed in clear terms that pH and initial concentrations were the most influential parameters and the maximum value of 99.28% of methylene blue removed at optimum conditions affirmed that the chitosan adsorbent is viable for the treatment of effluents from the textile industry.



Mustapha, S., Ndamitso, M.M., Abdulkareem, A.S., Tijani,J.O., Mohammed, A.K. & Shuaib, D.T. (2019). Potential of using Kaolin as natural adsorbent for the removal of pollutants from tannery waste water. Heliyon, 5, 1-17. https://doi.org/10.1016/j.heliyon.2019.e02923

Dutta, S., Bhattacharyya, A., Ganguly, A., Gupta, S., & Basu, S. (2011). Application of Response Surface Methodology for Preparation of Low-Cost Adsorbent from Citrus Fruit Peel and for Removal of Methylene Blue. Desalination, 275, 26-36 https://doi.org/10.1016/j.desal.2011.02.057

Ebrahimpoor, S. Kiarostami, V., Khosravi, M., Davallo, M. & Ghaedi, A. (2021). Optimization of Tartrazine Adsorption onto Polypyrrole/SrFe12019/Graphene Oxide Nanocomposite Using Central Composite Design and Bat Inspired Algorithm with the aid of Artificial Neural Networks. Fibers and Polymers, 22(10), 159-170. http://doi.org/10.1007/s12221-021-8163-9

Ahmed, M. J. (2016). Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. Journal of Environmental Chemical Engineering, 4(1), 89-99. http://dx.doi.org/10.1016/j.jece.2015.10.027

Sahu, N., Rawat, S., Singh, J., Karri, R.R., Lee, S., Choi, J.S. & Koduru, J.R. (2019). Process Optimization and Modeling of Methylene Blue Adsorption Using Zero-Valent Iron Nanoparticles Synthesized from Sweet Lime Pulp. Applied Sciences, 9(512), 1-17. DOI: 10.3390/app9235112 http://doi.org/10.3390/app9235112

Chequer, F.M.D., de Oliveira, G.A.R., Ferraz, E.R.A., Cardoso, J.C. Zanoni, M.V.B. & de Oliveira, D.P. (2013). Textile dyes: Dying process and finishing, IntechOpen, London. https://dx.doi.org/10.5772/53659

Slama, H.B., Chenari,B.A., Pourhassan, Z., Alenezi, F.N., Silini, A., Cherif, S.H., Oszako, T. & Luptakova, L. (2021). Diversity of synthetic dyes from the textile industries, discharge impacts and treatment methods. Applied Science, 11 (6255), 1-21. https://doi.org/10.3390/app111A6255

Yanto, D.H.Y., Auliana, N., Anita,S.H. & Watanabe, T. (2019). Decolorization of synthetic textile dyes by Laccase from newly isolated trametes hirsata, EDN084 mediated by violuric acid. IOP Conf. Series: Earth and Environmental Science 374, 012005, 1-8. https://doi.org/10.10.88/1755-1315/374/1/012005

Krishna M, T. P., & Gowrishankar, B. S. (2020). Process optimisation of methylene blue sequestration onto physical and chemical treated coffee husk based adsorbent. SN Applied Sciences, 2(5). https://doi.org/10.1007/s42452-020-2603-9

Ong, S., Lee, W., Keng, P., Lee, S. & Hung, Y. (2010). Optimization of basic and reactive dye uptakes in binary dye solution using statistical experimental methodology. International Journal of the Physical Sciences, 5(14), 2171-2178. ISSN 1992 - 1950

Pereira, L., & Alves, M. (2012). Dyes—environmental impact and remediation. In Environmental protection strategies for sustainable development (pp. 111-162). Springer, Dordrecht. Doi:10.1007/978-94-007-1591-2_4

Chequer, F.M.D., de Oliveira, G.A.R., Ferraz, E.R.A., Cardoso, J.C., Zanomi, M.V.B. & de Oliveira, D.P. (2013). Textile Dyes: Dyeing Process and Environmental Impact, Intech, Chapter 6, 151-176. http://dx.doi.org/10.5772/53659

Lellis, B., Polonio, F.Z.C., Pamphile, J.A. & Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3, 275-290. http://doi.org/10.1016/j.biori.2019.09.001

Cifci, D.I., & Meric, S. (2016). Optimization of methylene blue adsorption by pumice powder. Advances in Environmental Research, 5(1), 37-50. http://dx.doi.org/10.12989/aer.2016.5.1.037

Corda, N.C., Kini, M. S., Raghuvir, P.B., Mathew, T.M. (2018). A Review on Adsorption of Cationic Dyes using Activated Carbon. MATEC Web of Conferences, 144, 02022, 1-16. http://doi.org/10.1051/matecconf/201814402022

Yusuff, R.O. & Sonibare, J.A. (2004). Characterization of textile industries’ effluents in Kaduna, Nigeria and pollution implications. Global Nest: The International Journal, 6(3), 212-221.

Durotoye, T.O., Aderonke, A. A., David, O.O. & Onakunle, O. (2018). Impact assessment of waste discharge from a textile industry in Lagos, Nigeria. Cogent Engineering, 5, 1531687, 1-11. https://doi.org./10.1080/23311916.2018.1531687

Ajibade, O. M., Banjo, O. A., Oguntuyaki, T. A., Osobamiro, T. M., & Ajakore, A. A. (2020). Implications of carbonates and chlorides contam-ination in groundwater: Examples from textile tie and dye markets in some parts of Southwestern Nigeria. Indian Journal of Science and Technology, 13(32), 3349-3363. https://doi.org/10.17485/IJST/v13i32.539

Awomeso, J.A., Taiwo, A.M., Gbadebo, A.M. and Adenowo, J.A. (2010). Studies on the pollution of waterbody by textile industry effluents in Lagos, Nigeria. Journal of Applied Sciences in Environmental Sanitation, 5(4), 353-359. ISSN 0126-2807.

Akintunde, D.G. & Bamgbose, (2020). Seasonal Impact of Ikeja Industrial Wastewaters on water quality of proximate Iya Alaro River in Lagos, Nigeria. International Journal of Environmental Modelling, 3(2), 56-67.

Adedeji, O.H. & Olayinka, O.O. (2015). Assessment of ground water contamination by textile effluent discharges in Ikorodu, Nigeria. Applied Environmental Research, 37(1), 35-48.

Aneyo, I.A., Doherty, F.V., Adebesin, O.A & Hammed, M.O. (2016). Biodegradation of pollutants in waste water from pharmaceutical , textile and local dye effluent in Lagos, Nigeria. Journal of Health and Pollution, 6(12), 34-42. https://doi.org/10.5696/2156-9614-6.12.34

Gerente, C., Lee, V. K. C., Cloirec, P. L. & McKay, G. (2007). Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption—Mechanisms and Models Review. Critical Reviews in Environmental Science and Technology, 37(1), 41– 127. http://doi.org/10.1080/10643380600729089

Ozturk, D., Sahan, T. Disu, E.& Aktas, N. (2014). Optimization with response surface methodology (RSM) of adsorption conditions of Cd(II) ions from aqueous solutions by pumice. Journal of Biology and Chemistry, 42(2), 183-192. http://doi.org/10.15671/HJBC.20144210857

Amode, J.O., Santos, J.H., Alam, M.Z., Aminul, H.M. & Chan,C.M. (2016). Adsorption of Methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: equilibrium and kinetic studies. International Journal of Industrial Chemistry, 7, 333-345. http://doi.org/10.1007/s40090-016-0085-9

Dehghani, M. H., Dehghan, A., Alidadi, H., Dolatabadi, M., Mehrabpour, M., & Converti, A. (2017). Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: Kinetic and equilibrium study. Korean Journal of Chemical Engineering, 34(6), 1699–1707. http://doi.org/10.1007/s11814-017-0077-2

Tsamo, C., Paltahe, A., Fotio, D., Vincent, T. A. & Sales, W. F. (2019). One-, Two-, and Three-Parameter Isotherms, Kinetics, and Thermodynamic Evaluation of Co (II) Removal from Aqueous Solution Using Dead Neem Leaves. International Journal of Chemical Engineering, 1–14. http://doi.org/10.1155/2019/6452672

Saleh, T.A. & Gupta, V. K. (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Advances in Colloid and Interface Science, 211,93-101. http://doi.org/10.1016/j.cis.2014.06.006

Gupta, V. K. Nayak, A. & Agarwal, S (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20(1), 1-18. http://doi.org/10.4491/eer.2015.018

Odoemelam, S. A., Emeh, U. N. & Eddy, N. O. (2018). Experimental and computational chemistry studies on the removal of methylene blue and malachite green dyes from aqueous solution by neem (Azadirachta indica) leaves. Journal of Taibah University for Science, 12(3), 255-265. http://doi.org/10.1080/16583655.2018.1465725

Regti, A., El Kassimi, A., Laamari, M. R., & El Haddad, M. (2017). Competitive adsorption and optimization of binary mixture of textile dyes: A factorial design analysis. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24(1), 1–9. http://doi.org/10.1016/j.jaubas.2016.07.005

Singh, K. & Arora, S. (2011). Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Critical Reviews in Environmental Science and Technology, 41(9), 807–878. http://doi.org/10.1080/10643380903218376

Olafadehan, O. A., Amoo, K. O., Ajayi, T. O., & Bello, V. E. (2021). Extraction and characterization of chitin and chitosan from Callinectes amnicola and Penaeus notialis shell wastes. Journal of Chemical Engineering and Material Science, 12 (12), 1–30. https://doi.org/10.5897/JCEMS2020.0353

Akintunde, D.G. and Bamgbose, (2020). Seasonal impact of Ikeja industrial wastewaters on water quality of proximate Iya Alaro river in Lagos, Nigeria. International Journal of environmental modelling, 3(2), 56-67.

Bello, V. E., & Olafadehan, O. A. (2021). Comparative investigation of RSM and ANN for multi response modeling and optimization studies of derived chitosan from Archachatina marginata shell. Alexandria Journal of Engineering, 60(4), 3869–3899.https://doi.org/10.1016/j.aej.2021.02.047

Sambo, R. E., Nuhu, A. A. & Uba, S. (2019). Preparation and characterisation of shrimp waste-derived chitin, chitosan and modified chitosan films. Nigerian Research Journal of Chemical Sciences, 6, 213-230. http://www.unn.edu.ng/nigerian-research-journal-of-chemical-sciences/

Allouss,D., Essamiali, Y., Amadine, O., Chakir, A.,& Zahouily, M. (2019). Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption, kinetics, isotherm, Thermodynamics and Reusability Studies. Royal Society of Chemistry Advances, 9(65), 37858-37869. https://doi.org/10.1039/c9RA06450H

Fouzia, O., Yamina, C., Samia, B. and Zohra, S.A.F. (2022). Three level design to estimate dyes adsorption parameters using oenological by product as adsorbent. Journal of Environment Treatment Techniques, 10 (1), 134-142. https://doi.org/10.47277/JETT/10(1)142

Vafakish, B., & Wilson, L. D. (2019). Surface-Modified chitosan: An adsorption study of a “Tweezer-Like” biopolymer with fluorescein. Surfaces, 2(3), 468-484. http://doi.org/10.3390/2030035

Granato, D., & Calado, V.M.A. (2014). Mathematical and Statistical Methods in Food Science and Technology, First edition, John Wiley and Sons, ltd., 4-17.

Inam, E., Etim, U. J., Akpabio, E. G., & Umoren, S. A. (2017). Process optimization for the application of carbon from plantain peels in dye abstraction. Journal of Taibah University for Science, 11(1), 173–185. http://doi.org/10.1016/j.jtusci.2016.01.003

Chatterjee, S., Kumar, A., Basu, S., & Dutta, S. (2012). Application of response surface methodology for methylene blue dye removal from aqueous solution using low cost adsorbent. Chemical Engineering Journal, 181, 289-299. http://doi.org/10.1016/j.cej.2011.11.081

Ghaedi, M.& Kokhdan, S. N. (2015). Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 141–148. http://doi.org/10.1016/j.saa.2014.07.048

Igwegbe, C.A., Mohammadi, L., Ahmadi, S., Rahdar, A., Khadkhodaaiy,D., Dehghami, R., & Rahdar, S. (2019). Modeling of adsorption methylene blue dye on Ho-CaWO4 nanoparticles using response surface methodology (RSM) and artificial neural network (ANN) techniques. Methods X, Vol. 6, 1779-1797. https://doi.org/10.1016/j.mex.2019.07.016

Dbik, A., El Messaoudi, N., Bentahar, S., El Khomri,M., Lacherai, A. and Faska, N. (2022). Optimization of methylene blue adsorption on agricultural solid waste using box-behnken design (BBD) combined with response surface methodology (RSM) modelling. Biointerface Research in Applied Chemistry, 12(4), 4567-4583. https://doi.org/10.33263/BRIAC124.45674583

Unuabonah, E.I., Adie, G.U., Onah, L.O. & Adeyemi, O.G. (2009). Multi-stage optimization of the adsorption of methylene blue dye onto defatted Cariya papaya seeds. Chemical Engineering Journal, 155, 567-579. https://doi.org/10.1016/j.cej.2009.07.012

Momina, M.R., Suzylawati, I. & Ahmad, A (2019). Optimization study for the desorption of methylene blue dye from clay based adsorbent coating. Water, 11(1304), 1-13. https://doi.org/10.3390/W11061304

Domga, R. Daouda, A., Arnaud, M.A.G., Balike, M., Domga, W.B. & Bosco, I.J. (2022). Optimization of methylene blue adsorption onto activated carbon from Bos Indicus Gudali bones using a box behnken experimental design. American Journal of Chemistry, 12(1), 1-9. https://doi.org/10.5923/j.chemistry.20221201.01

Fegousse, A., El Gaidoumi, A., Miyah, Y., El Mountassir, R. & Lahrichi, A. (2019). Pineapple bark performance in dyes adsorption : optimization by the central composite design. Journal of Chemistry, 3017163, 1-11. https://doi.org/10.1155/2019/3017163

Chagas, N.V., Meira, J.S., Anaissi, F.J., Melquiades, F.L., Quinaia, S.P., Felsner,M.L., Justi, R.C. (2014). Preparation, characterization of bentonite clay/activated charcoal composites and 23 factorial design application in adsorption studies of methylene blue dye. Revista Virtual de Quimica, 6(6), 1607-1623. https://doi.org/10.5923/1984-6835.20140104

Asgari, G., Darvishmotevalli, M., Beheshti, A., & Salari, M. (2020). Modeling and Optimization of Methylene Blue Adsorption from Aqueous Solution by Pumice Based on RSM-CCD and ANN-GA Methods. Journal of Environmental Health Enginering, 8(1), 83-98. https://jehe.abzums.ac.ir/article-1-808-en.html

Dey, A. K. , & Dey, A. (2021). Selection of Optimal Processing Condition during Removal of Methylene Blue Dye Using Treated Betel Nut Fibre Implementing Desirability Based RSM Approach. In (Ed.), Response Surface Methodology in Engineering Science. IntechOpen. https://doi.org/10.5772/intechopen.98428

Wang, W., Wu, X. & Long, S. (2022). Optimizing the Methylene Blue Removal from Aqueous Solution Using Pomelo Peel Based Biochar Assisted by RSM and ANN-PSO. Pol. J. Environ. Stud. 2022;31(1):329–346. https://doi.org/10.15244/pjoes/137947

Mosoarca, G., Popa, S., Vancea, C. & Boran, S. (2021). Optimization,Equilibrium and Kinetic Modeling of Methylene Blue Removal from Aqueous Solutions Using Dry Bean Pods Husks Powder. Materials , 14, 5673, 1-14. https://doi.org/10.3390/ma14195673

Savic, I., Gajic, D., Stojiljkovic, S., Savic, I., & Gennaro, S. di. (2014). Modelling and Optimization of Methylene Blue Adsorption from Aqueous Solution Using Bentonite Clay. 24th European Symposium on Computer Aided Process Engineering, 1417–1422. https://doi.org10.1016/b978-0-444-63455-9.50071-4

Yilmaz, E., Guzel Kaya, G., & Deveci, H. (2019). Removal of methylene blue dye from aqueous solution by semi‐interpenetrating polymer network hybrid hydrogel: Optimization through Taguchi method. Journal of Polymer Science Part A: Polymer Chemistry, 57(10), 1070–1078. https://doi.org10.1002/pola.29361

Archana, B.K.S. Jayanna, A. A., Ananth, M.S, Ali, H.B.A., Muralidhara, K. & Yogesh, K. (2022). Numerical investigations of response surface methodology for organic dye adsorption onto Mg-Al LDH -GO Nano Hybrid: An optimization, kinetics and isothermal studies, Journal of the Indian Chemical Society, 99 (1), 100249. https://doi.org/10.1016/j.jics.2021.100249.

Saafie, N., Samsudin, M. F. R., & Sufian, S. (2020). Optimization of Methylene Blue Adsorption via Functionalized Activated Carbon Using Response Surface Methodology with Central Composite Design. Key Engineering Materials, 841, 220–224. https://doi.org/10.4028/www.scientific.net/kem.841.220

Pilkington, J.L., Preston, C. & Gomes, R.L.(2014). Comparison of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Towards Efficient Extraction of Artemisia annua. Industrial Crops and Products, 58, 15-24. http://dx.doi.org/10.1016/j.indcrop.2014.03.016

Olden, J. D., Joy, M. K., & Death, R. G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178(3-4), 389–397. http://doi.org/10.1016/j.ecolmodel.2004.03.013

Shahryari, Z., Sharifi, A., & Mohebbi, A. (2013). Artificial neural network (ANN) approach for modeling and formulation of phenol adsorption onto activated carbon. Journal of Engineering Thermophysics, 22(4), 322–336. http://doi.org/10.1134/s181023281304005x

Yu, H.C., Huang, S.M., Lin, W.M., Kuo, C.H., & Shieh, C.J. (2019). Comparison of artificial neural networks and response surface methodology towards an efficient ultrasound-assisted extraction of chlorogenic acid from Lonicera Japonica. Molecules, 24(12), 2304. http://doi.org/10.3390/molecules24122304

Sibalija, T.V. (2018). Application of Simulated Annealing in Process Optimization: A Review, Nova Science Publishers, Inc, Chapter 1, 2-49.

Adeyi, A. A., Oloje, A.O., & Giwa, A. (2017) Statistical optimization of chitosan extraction from shrimp shells using response surface methodology. ABUAD Journal of Engineering Research and Development (AJERD), 1(1), 8–17.

Zainal, S., Noorul Fhadila, K., Ri Hanum, Y.S., & Rahmah, M. (2014). Optimization of chitosan extract from cockle shell using response surface methodology (RSM). Asian Journal of Agriculture and Food Science, 2(4), 1–10. ISSN: 2321 – 1571.

Kalavathy, M.H, Regupathib, I., Pillai, M.G., & Mirandaa, L.R. (2009). Modelling, analysis and optimization of adsorption parameters for H3PO4 activated rubber wood sawdust using response surface methodology (RSM). Colloids and Surfaces B: Biointerfaces, 70, 35–45. http://doi.org/10.1016/j.colsurfb.2008.12.007

Mourabet, M., El. Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M, El Hamri, R., & Taitai, A. (2012). Removal of Flouride from aqueous solution by Adsorption on Apatitic Tricalcium Phosphate using Box Behnken Design and Desirability Function. Applied Surface Science, 258, 4402-4410. https://doi.org/10.1016/j.apsusc.2011.12.125

Bayuo, J., Pelig-Ba, K.B., & Abukari, M.A. (2019). Optimization of Adsorption Parameters for Effective Removal of Lead (II) from Aqueous Solution. Physical Chemistry: An Indian Journal, 14 (1), 1-25. www.tsijournals.com

Bhattacharya, Sankha (2021). Central Composite Design for Response Surface Methodology and its Application in Pharmacy.1-19, IntechOpen. http://dx.doi.org/10.5772/intechopen.95835

Olafadehan, A.O., Bello, V.E., Amoo, K.O. & Bello, A.M. (2022). Isotherms, kinetic and thermodynamics studies of methylene blue adsorption on chitosan flakes derived from African giant snail. African Journal of Environmental Science and Technology, 16(1), 37-70. https://doi.org/10.5897/AJEST2021.3065

Patel, K. A. & Brahmbhatt, P.K. (2016). A comparative study of the RSM and ANN models for predicting surface roughness in roller burnishing. Procedia Technology, 23, 391-397. https://doi.org/10.1016/j.protcy.2016.03.042

Merma, A. G., Olivera, C.A., Hacha, R.R., Torem, M.L. & Santos, B.F. (2019). Optimization of hematite and quartz bioflotation by an artificial neural network (ANN). Journal of mater resource technology, 3, 3076–3087. https://doi.org/10.1016/j.jmrt.2019.02.022

Mourabet, M., El. Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M, El Hamri, R., & Taitai, A. (2012). Removal of Flouride from aqueous solution by Adsorption on Apatitic Tricalcium Phosphate using Box Behnken Design and Desirability Function. Applied Surface Science, 258, 4402-4410. https://doi.org/10.1016/j.apsusc.2011.12.125

Awolusi, T. F., Oke, O. L., Akinkurolere, O. O. and Atoyebi, O. D. (2019). Comparison of response surface methodology and hybrid-training approach of artificial neural network in modelling the properties of concrete containing steel fibre extracted from waste tyres, Cogent Engineering, 6(1), 1–19. https://dx.doi.org/10.20944/preprints201903.0161.v1

Yulia, F. Chairina, I. Zulys, A. & Nasruddin (2021). Multi-objective genetic algorithm optimization with an artificial neural network for C02/CH4 adsorption prediction in metal-organic frame work. Thermal science and Engineering Progress, 25, 100967. https://doi.org/10.1016/j.tsep.2021.100967

Jafari, M.M., Khayati, G.R., Hosseini, M., Manesh, D.H.(2017). Modelling and optimization roll- binding parameters for band strength of Ti/Cu/Ti clad composites by artificial neural networks and genetic algorithm. International Journal of Engineering (IJE), Transactions C, 30, 12, 1885-1893. https://doi.org/10.58.29/ije.2017.30.12c.10

Broujeni, B.R., Nilchi, A.& Azadi, F. (2020). Adsorption modelling and optimization of thorium (iv) ion from aqueous solution using chitosan/TiO2 nano composite: application of artificial neural network and genetic algorithm. Environmental Nanotechnology, Monitoring and Management, 100400. https://doi.org/10.1016/j.enmm.2020.100400

Yao, L., Hong, C. , Dashtiford, H. Esmaeili, H. (2021). Selective removal of sodium ions from aqueous media using effective adsorbents:optimization by RSM and genetic algorithm. Acta Chim Slov., 68 (4), 791-803. https://doi.org/10.17344/acsi.2021.6762

Hamidi, F., Dehgham, M.H., Kasraee, M., Salari, M., Shiri, L. & Mahvi, A.H. (2022). Acid red18 removal from aqueous solution by new crystalline granular ferric hydroxide (GFH): optimization by response surface methodology and genetic algorithm. Scientific Report, 12(4761), 1-15. https://doi.org/10.1038/s41598-022-08769

Deng, S. & Chen, Y. (2019). A study by response surface methodology (RSM) on optimization of phosphorus adsorption with nano-spherical calcium carbonate derived from waste. Water Science & Technology, 79(1), 188-197.https://iwaponline.com/wst/article-pdf/79/1/188/663919/wst079010188.pdf

Ali, A.F., Kovo, A.S. and Adetunji, S.A. (2017). Methylene blue and brilliant green dyes removal from aqueous solution using agricultural wastes activated. Journal of Encapsulation and Adsorption Sciences, 7, 95-107. https://doi.org/10.4236/jras.2017.72007

Saini, S. Chawla, J., Kumar, R. & Kaur, I.(2019). Response surface methodology (RSM) for optimization of cadmium ions adsorption using C16‑6‑16 incorporated mesoporous MCM‑41. SN Applied Sciences, 1, 894-904. https://doi.org/10.1007/s42452-019-0922-5.

Ghogomu, J. N., Noufame, T. D., Ketcha, M. J. & Ndi, N. J. (2013). Removal of Pb (II) ions from aqueous solutions by kaolinite and metakaolinite materials. British Journal of Applied Science & Technology, 3, Issue 4, 942–961. http://dx.doi.org/10.9734/BJAST/2013/4384

Tolcha, T., Gemechu, T., & Megersa, N. (2020). Flower of Typha latifolia as a low-cost adsorbent for quantitative uptake of multiclass pesticide residues from contaminated waters. South African Journal of Chemistry, 73, 22-29 https://doi.org/10.17159/0379-4350/2020/v73a4

Hosseini, S.A., Mashayki, S & Babaei, S. (2016). Graphene Oxide/ Zinc Oxide nanocomposites: A superior adsorbent for removal of methylene blue-statistical analysis by response surface methodology (RSM). South African Journal of Chemistry, 69, 105-112.

Chittoo, B. S. & Sutherland, C. (2019). Adsorption Using Lime-Iron Sludge–Encapsulated Calcium Alginate Beads for Phosphate Recovery with ANN- and RSM-Optimized Encapsulation. Journal of Environmental Engineering, 145(5), 04019019. doi:10.1061/(asce)ee.1943-7870.0001519

Supeni, E.E., Eparachchi, J.A., Islam, M.M. & Lau, K.T.( 2013). Development of artificial neural network model in predicting performance of smart wind turbine blade. 3rd Malaysian postgraduate conference (MPC 2013), 233-242.

Wang, Q. L., Apul, O. G., Xuan, P., Luo, F. & Karanfil, T. (2013). Development of a 3DQSPR model for adsorption of aromatic compounds by carbon nanotubes: comparison of multiple linear regression, artificial neural network and support vector machine. RSC Advances, 3(46), 1-32. http://doi.org/10.1039/c3ra43599g

Lee, J., Kim, C.G., Lee, J., Kim, N. and Kim, H. (2018). Application of Artificial Neural Networks to Rainfall Forecasting in the Geum River Basin, Korea. Water, 10 (10), 1448. http://doi.org/10.3390/w10101448

Hamidi, F., Dehgham, M.H., Kasraee, M., Salari, M., Shiri, L. & Mahvi, A.H. (2022). Acid red18 removal from aqueous solution by new crystalline granular ferric hydroxide (GFH): optimization by response surface methodology and genetic algorithm. Scientific Report, 12(4761), 1-15. https://doi.org/10.1038/s41598-022-08769

How to Cite
BELLO, V. E., & Olafadehan, O. A. (2022). Evaluation of Heterocyclic Aromatic Compound Dye (Methylene Blue) on Chitosan Adsorbent Sourced from African Snail Shell: Modelling and Optimization Studies. Journal of Applied Science & Process Engineering, 9(1), 1054-1090. https://doi.org/10.33736/jaspe.4464.2022