Effect of Fibre Hybridization on Mechanical Properties of Nylon-Broom Grass/Root-Broom Grass Fibre Reinforced Hybrid Polypropylene Composites

Authors

  • Md. Abdullah Al Amin Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
  • Tasnim Mahjabin Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
  • Mahbub Hasan Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh

DOI:

https://doi.org/10.33736/jaspe.3900.2021

Keywords:

Onion root fibres, Nylon fibres, Broom grass fibres, Polypropylene hybrid composite, Mechanical properties.

Abstract

In the present research, nylon-broom grass and onion root-broom grass reinforced hybrid polypropylene composites were manufactured using a hot press machine. Three different levels of fibre loading (5, 10, and 15 wt.%) with fibre ratios of 1:1 were incorporated in the polypropylene matrix. Tensile, flexural, impact and hardness tests of the composites were subsequently carried out. The two combinations showed opposite trends for tensile strength and impact strength and similar trends for Young’s modulus, elongation, flexural properties and hardness. Tensile strength of the onion root containing composites increased with an increase of fibre loading, while in the nylon containing composites, tensile strength decreased with an increase in fibre loading. Their Young’s modulus increased and % elongation decreased with an increase in fibre content. Both flexural strength and flexural modulus increased with an increase in fibre content in both combinations. The impact strength of the onion root containing composites decreased with an increase in fibre loading, while the nylon containing composites showed the opposite trend. The hardness of both combinations increased with an increase in fibre content. The best set of properties were found at 15 wt% fibre loading in the nylon-broom grass-PP hybrid composite.

References

Siddika, S., Sharif, A., & Hasan, M. (2021). Effect of Areca and Waste Nylon Fiber Hybridization on the Properties of Recycled Polypropylene Composites. Journal of Natural Fibers, 1-13. https://doi.org/10.1080/15440478.2021.1929651

Z. Hashin, Z. (1983). Analysis of composite materials—A survey, Journal of Applied Mechanics, 50(3), 481-505. https://doi.org/10.1115/1.3167081

Ramanaiah, K., Prasad, A. R., & Reddy, K. H. C. (2012). Thermal and mechanical properties of waste grass broom fiber-reinforced polyester composites. Materials & Design, 40, 103-108. https://doi.org/10.1016/j.matdes.2012.03.034

Srinivasababu, N., Kumar, J. S., & Reddy, K. V. K. (2014). Mechanical and dielectric properties of Thysanolaena maxima (broom grass) long fibre reinforced polyester composites. Procedia materials science, 6, 1006-1016. https://doi.org/10.1016/j.mspro.2014.07.171

Alam, M. J., Islam, S. M. Z., & Rahman, M. M. (2017). Cultivation, production and management techniques of broom grass (Thysanolaena maxima Roxb.) in hilly areas of Bangladesh. Agriculture and Natural Resources, 51(1), 20-24. https://doi.org/10.1016/j.anres.2016.08.006

Marrelli, M., Amodeo, V., Statti, G., & Conforti, F. (2019). Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities. Molecules, 24(1), 119. https://doi.org/10.3390/molecules24010119

Arakawa, T., Nagatoshi, F., & Arai, N. (1969). Melting behavior and morphology of drawn nylon 6. Journal of Polymer Science Part A‐2: Polymer Physics, 7(9), 1461-1472. https://doi.org/10.1002/pol.1969.160070902

Sharma, K., Mahato, N., Nile, S. H., Lee, E. T., & Lee, Y. R. (2016). Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food & function, 7(8), 3354-3369. https://doi.org/10.1039/C6FO00251J

National Onion Association, Sustainability: Onion Power , National Onion Association, USA.

Negi, R., Satpathy, G., Tyagi, Y. K., & Gupta, R. K. (2012). Biosorption of heavy metals by utilising onion and garlic wastes. International Journal of Environment and Pollution, 49(3-4), 179-196. doi: 10.1504/IJEP.2012.050898

de Melo, P. E. (2003). The root systems of onion and Allium fistulosum in the context of organic farming: a breeding approach. Wageningen University and Research. ISBN: 90-5808-915-0

ASTM D 638, Standard test method for tensile properties of plastics, ASTM Book of Standards, USA.

ASTM D 790, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM Book of Standards, USA.

ASTM D 6110,Standard Test Methods for Determining the Charpy Impact Resistance of Notched Specimens of Plastics, ASTM Book of Standards, USA.

Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2008). Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Composites Part A: Applied Science and Manufacturing, 39(11), 1739-1747. https://doi.org/10.1016/j.compositesa.2008.08.002

Chow, P., Bao, Z., Youngquist, J. A., Rowell, R. M., Muehl, J. H., & Krzysik, A. M. (1996). Effects of two fiber treatments on properties of hemlock hardboard. Forest products journal, 46(7/8), 62-66.

Thwe, M. M., & Liao, K. (2002). Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Composites Part A: Applied Science and Manufacturing, 33(1), 43-52.. https://doi.org/10.1016/S1359-835X(01)00071-9

Yang, H. S., Kim, H. J., Son, J., Park, H. J., Lee, B. J., & Hwang, T. S. (2004). Rice-husk flour filled polypropylene composites; mechanical and morphological study. Composite structures, 63(3-4), 305-312. https://doi.org/10.1016/S0263-8223(03)00179-X

Lou, C. W., Lin, C. W., Lei, C. H., Su, K. H., Hsu, C. H., Liu, Z. H., & Lin, J. H. (2007). PET/PP blend with bamboo charcoal to produce functional composites. Journal of Materials Processing Technology, 192, 428-433.. https://doi.org/10.1016/j.jmatprotec.2007.04.018

Jamil, M. S., Ahmad, I., & Abdullah, I. (2006). Effects of rice husk filler on the mechanical and thermal properties of liquid natural rubber compatibilized high-density polyethylene/natural rubber blends. Journal of Polymer Research, 13(4), 315-321.. https://doi.org/10.1007/s10965-005-9040-8

Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., & Hwang, T. S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite structures, 72(4), 429-437.. https://doi.org/10.1016/j.compstruct.2005.01.013

Rana, A. K., Mandal, A., & Bandyopadhyay, S. (2003). Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Composites Science and Technology, 63(6), 801-806.. https://doi.org/10.1016/S0266-3538(02)00267-1

Joseph, S., Sreekala, M. S., Oommen, Z., Koshy, P., & Thomas, S. (2002). A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Composites Science and Technology, 62(14), 1857-1868.. https://doi.org/10.1016/S0266-3538(02)00098-2

Reis, J. M. L., & Carneiro, E. P. (2012). Mechanical characterization of sisal fiber reinforced polymer mortars: Compressive and flexural properties. Journal of Reinforced Plastics and Composites, 31(23), 1662-1669. https://doi.org/10.1177/0731684412462264

Rahman, M. R., Huque, M. M., Islam, M. N., & Hasan, M. (2009). Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Composites Part A: Applied Science and Manufacturing, 40(4), 511-517. https://doi.org/10.1016/j.compositesa.2009.01.013

Hatta, N., & Akmar, N. (2008, November). Mechanical properties of polystyrene/polypropylene reinforced coconut and jute fibers. In CUTSE International Conference, 24-27.

Park, B. D., & Balatinecz, J. J. (1997). Mechanical properties of wood‐fiber/toughened isotactic polypropylene composites. Polymer composites, 18(1), 79-89. https://doi.org/10.1002/pc.10263

Mohamed, W. Z. W., Baharum, A., Ahmad, I., Abdullah, I., & Zakaria, N. E. (2018). Effects of fiber size and fiber content on mechanical and physical properties of mengkuang reinforced thermoplastic natural rubber composites. BioResources, 13(2), 2945-2959. ISSN: 1930-2126

Servais, C., Luciani, A., & Månson, J. A. E. (2002). Squeeze flow of concentrated long fibre suspensions: experiments and model. Journal of non-newtonian fluid mechanics, 104(2-3), 165-184. https://doi.org/10.1016/S0377-0257(02)00018-6

Chow, P., Bao, Z., Youngquist, J. A., Rowell, R. M., Muehl, J. H., & Krzysik, A. M. (1996). Effects of two fiber treatments on properties of hemlock hardboard. Forest products journal, 46(7/8), 63. ISSN: 00157473

Jayaraman, K. (2003). Manufacturing sisal–polypropylene composites with minimum fibre degradation. Composites Science and technology, 63(3-4), 367-374. https://doi.org/10.1016/S0266-3538(02)00217-8

Siddika, S., Mansura, F., Hasan, M., & Hassan, A. (2014). Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fibers and polymers, 15(5), 1023-1028. https://doi.org/10.1007/s12221-014-1023-0

Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., & Hwang, T. S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite structures, 72(4), 429-437. https://doi.org/10.1016/j.compstruct.2005.01.013

Karmarkar, A., Chauhan, S. S., Modak, J. M., & Chanda, M. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 38(2), 227-233. https://doi.org/10.1016/j.compositesa.2006.05.005

Downloads

Published

2021-10-31

How to Cite

Al Amin, M. A. ., Mahjabin , T. ., & Hasan, M. (2021). Effect of Fibre Hybridization on Mechanical Properties of Nylon-Broom Grass/Root-Broom Grass Fibre Reinforced Hybrid Polypropylene Composites. Journal of Applied Science &Amp; Process Engineering, 8(2), 965–976. https://doi.org/10.33736/jaspe.3900.2021