Chemical and Mineralogical Composition Analysis of Different Nigerian Metakaolins

  • Ike Chimdieze Daniel Chemical Engineering Department, Federal University of Technology, PMB 1526, Owerri, Nigeria
  • William Ghann Center for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 W. North Ave., Baltimore, MD 21216
  • Igboko Ndubuisi Ndubuisi Chemical Engineering Department, Federal University of Technology, PMB 1526, Owerri, Nigeria
  • Kenneth Okpala Chemical Engineering Department, Federal University of Technology, PMB 1526, Owerri, Nigeria
  • Birol Ozturk Department of Physics and Engineering Physics, Morgan State University, 1700 E. Cold Spring Ln, Baltimore, MD 21251
  • Mohammed M. Rahman Chemistry department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Faisal Islam Chowdhury Department of Chemistry, University of Chittagong, Chittagong, Bangladesh
  • Md. Nuruzzaman Khan Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh
  • Md. Rezaur Rahman Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, University Malaysia Sarawak
  • Md. Abdul Majed Patwary Department of Chemistry, Comilla University, Cumilla-3506, Bangladesh
  • Nafees Ahmed Department of Chemistry, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka
  • Jamal Uddin Center for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 W. North Ave., Baltimore, MD 21216
Keywords: Clay, Kaolin, Oxides, Metakaolin, and Ceramics


In this work, four different metakaolin samples (C01, A6060, B6075, and C12090) were investigated to determine their constituent elements and the relative quantities of the oxide contents associated with each of the elements. Kaolin samples were collected from different sites at Okpella, a village in the Edo state of Nigeria, West Africa. The metakaolin was produced by calcination at 750℃, which was followed by the dealumination process. The prepared samples were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Resonance (FTIR) spectroscopy, and X-ray diffraction (XRD) technique. Digital images were obtained and analyzed to determine the texture and porosity of the samples.  FE-SEM images showed a slight difference in the morphology of the samples. Differing percentages of metal oxides were determined from the samples using EDS analysis.  The major oxides present in all the samples were Silica (Silicon oxide) and Alumina (Aluminium dioxide). Aluminium was completely absent in C12090 but had a large percentage of silicon (36%).


González, J. A., Carreras, A. C., & Ruiz, M. D. C. (2007). Phase transformations in clays and kaolins produced by thermal treatment in chlorine and air atmospheres. Latin American Applied Research, 37(2), 133-139.

Barrer, R. M., Baynham, J. W., Bultitude, F. W., & Meier, W. M. (1959). 36. Hydrothermal chemistry of the silicates. Part VIII. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues. Journal of the Chemical Society (Resumed), 195-208.

Kirk, R. E.; Othmer, D. F. (1991) Encyclopedia of Chemical Technology, 4th ed.; John Wiley & Sons: New York.

De Lucas, A., Uguina, M. A., Covian, I., & Rodriguez, L. (1992). Synthesis of 13X zeolite from calcined kaolins and sodium silicate for use in detergents. Industrial & engineering chemistry research, 31(9), 2134-2140.

Chandrasekhar, S., & Pramada, P. N. (2001). Sintering behaviour of calcium exchanged low silica zeolites synthesized from kaolin. Ceramics International, 27(1), 105-114.

Colina, F. G., Esplugas, S., & Costa, J. (2002). A new extraction procedure for simultaneous quantitative determination of water-soluble metals in reaction products of clays and inorganic salts. Clays and clay minerals, 50(3), 401-405.

Murray, H. H. (2007). Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays. Elsevier. ISSN: 1572-4352

White, C. E., Provis, J. L., Riley, D. P., Kearley, G. J., & Van Deventer, J. S. (2009). What is the structure of kaolinite? Reconciling theory and experiment. The Journal of Physical Chemistry B, 113(19), 6756-6765. DOI: 10.1021/jp810448t

Olaremu, A. G. (2015). Physico-chemical characterization of Akoko mined kaolin clay. Journal of Minerals and Materials characterization and Engineering, 3(05), 353-361.

Murray, H. H. (1999). Applied clay mineralogy today and tomorrow. Clay minerals, 34(1), 39-49.

Zhang, R., Alecrim, V., Hummelgård, M., Andres, B., Forsberg, S., Andersson, M., & Olin, H. (2015). Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing. Scientific reports, 5(1), 1-6. DOI: 10.1038/srep07676

Zhang, K., Cui, Z., Xing, G., Feng, Y., & Meng, S. (2016). Improved performance of dye-sensitized solar cells based on modified kaolin/PVDF-HFP composite gel electrolytes. RSC advances, 6(102), 100079-100089. DOI: 10.1039/C6RA19803A

Murray, H. H., Harvey, C., & Smith, J. M. (1977). Mineralogy and geology of the Maungaparerua halloysite deposit in New Zealand. Clays and clay minerals, 25(1), 1-5.

Badmus, B. S., & Olatinsu, O. B. (2009). Geophysical evaluation and chemical analysis of kaolin clay deposit of Lakiri village, southwestern Nigeria. International Journal of Physical Sciences, 4(10), 592-606.

Chandrasekhar, S., & Pramada, P. N. (1999). Investigation on the synthesis of zeolite NaX from Kerala kaolin. Journal of Porous Materials, 6(4), 283-297.

Goodyear, J., & Duffin, W. J. (1961). An X-ray examination of an exceptionally well crystallized kaolinite. Mineralogical magazine and journal of the Mineralogical Society, 32(254), 902-907.

Gruner, J. W. (1932). The crystal structure of kaolinite. Zeitschrift für Kristallographie-Crystalline Materials, 83(1-6), 75-88.

Brindley, G. W., & Robinson, K. (1946). The structure of kaolinite. Mineralogical magazine and journal of the Mineralogical Society, 27(194), 242-253.

Sengupta, P., Saikia, P. C., & Borthakur, P. C. (2008). SEM-EDX characterization of an iron-rich kaolinite clay. IJEMS, 15, 812-818. ISSN: 0022-4456

Hassan, U. J., & Abdu, S. G. (2014). Structural analysis and surface morphology of kaolin. Sci. World J., 9(3), 33-37.

Środoń, J., Drits, V. A., McCarty, D. K., Hsieh, J. C., & Eberl, D. D. (2001). Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays and Clay Minerals, 49(6), 514-528.

Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C. (2017). Scanning electron microscopy and X-ray microanalysis. Springer.

Lim, A. J. M. S., Syazwani, R. N., & Wijeyesekera, D. C. (2016, July). Impact of oriented clay particles on X-ray spectroscopy analysis. In IOP Conference Series: Materials Science and Engineering, 136 (1), 012012. IOP Publishing. doi:10.1088/issn.1757-899X

Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society Monograph, London.

Gardsden, J.A. (1975) Infrared Spectra of Minerals and Related Inorganic Compounds. Butterworth & Co Publishers, Ltd., London. ISBN 0-408-70665-1.

Saikia, B. J., & Parthasarathy, G. (2010). Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys, 1(4), 206-210. doi: 10.4236/jmp.2010.14031.

Caponi, N., Collazzo, G. C., Jahn, S. L., Dotto, G. L., Mazutti, M. A., & Foletto, E. L. (2017). Use of Brazilian kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents. Materials Research, 20, 14-22.

Costa, E., De Lucas, A., Uguina, M. A., & Ruiz, J. C. (1988). Synthesis of 4A zeolite from calcined kaolins for use in detergents. Industrial & engineering chemistry research, 27(7), 1291-1296.

Benco, L., Tunega, D., Hafner, J., & Lischka, H. (2001). Ab initio density functional theory applied to the structure and proton dynamics of clays. Chemical Physics Letters, 333(6), 479-484.

Nayak, P. S., & Singh, B. K. (2007). Instrumental characterization of clay by XRF, XRD and FTIR. Bulletin of Materials Science, 30(3), 235-238.

Parthasarathy, G., Kunwar, A. C., & Srinivasan, R. (2001). Occurrence of moganite-rich chalcedony in Deccan flood basalts, Killari, Maharashtra, India. European Journal of Mineralogy, 13(1), 127-134.

Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of hazardous materials, 97(1-3), 219-243.

Scorzelli, R. B., Bertolino, L. C., Luz, A. B., Duttine, M., Silva, F. A. N. G., & Munayco, P. (2008). Spectroscopic studies of kaolin from different Brazilian regions. Clay Minerals, 43(1), 129-135.

Panda, A. K., Mishra, B. G., Mishra, D. K., & Singh, R. K. (2010). Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363(1-3), 98-104.

How to Cite
Daniel, I. C., Ghann, W., Ndubuisi, I. N., Okpala, K., Ozturk, B., Rahman, M. M., Chowdhury, F. I., Khan, M. N., Rahman, M. R., Patwary, M. A. M., Ahmed, N., & Uddin, J. (2021). Chemical and Mineralogical Composition Analysis of Different Nigerian Metakaolins. Journal of Applied Science & Process Engineering, 8(2), 953-964.