DFT Based Comparative Studies of Some Glucofuranose and Glucopyranoside Esters and Ethers
DOI:
https://doi.org/10.33736/jaspe.3786.2021Keywords:
Glucofuranose, Glucopyranoside, DFT, Sugar esters, Sugar ethersAbstract
Carbohydrate-based molecular scaffolding received significant interest due to its impact on the drug discovery and development in synthetic carbohydrate chemistry during the last couple of decades. In this respect, four glucose compounds in the furanose and pyranose forms with ester and ether functionality were selected for their structural, thermodynamic and chemical reactivity studies. PASS predication indicated that the glucose in the six-membered pyranose form was more prone to biological properties compared to their five-membered furanose form. Also, in the pyranose form acetate ester (3) had more potentiality than the ethyl ether (4). The HOMO-LUMO energy gaps were almost similar for both monosubstituted furanose and pyranose glucose indicating their almost similar reactivities. It was also inferred that these 6-O-substituted compounds followed Lipinski’s rule with the acceptable range of ADMET levels, and hence, safe from lethal proarrhythmic risks. Hopefully, these results can be used in the near future for their probable pharmaceutical use without any remarkable toxicity.
References
Tiwari, V. K. (2021). Development of diverse range of biologically relevant carbohydrate-containing molecules: Twenty years of our journey. The Chemical Record, https://doi.org/10.1002/tcr.202100058
Campo, V. L., & Carvalho, I. (2013). In: Click Chemistry in Glycoscience (New Developments and Strategies), 325–357. https://doi.org/10.1002/9781118526996.ch13
Matin, M. M., Sharma, T., Sabharwal, S. G., & Dhavale, D. D. (2005). Synthesis and evaluation of glycosidase inhibitory activity of 5-hydroxy substituted isofagomine analogues. Organic & Biomolecular Chemistry, 3(9), 1702–1707. https://doi.org/10.1039/b418283a
Dhavale, D. D., Matin, M. M., Sharma, T., & Sabharwal, S. G. (2004). Synthesis and evaluation of glycosidase inhibitory activity of octahydro-2H-pyrido[1,2-a]pyrimidine and octahydro-imidazo[1,2-a]pyridine bicyclic diazasugars. Bioorganic & Medicinal Chemistry, 12(15), 4039–4044. https://doi.org/10.1016/j.bmc.2004.05.030
Mehta, D. P., Ichikawa, M., Salimath, P. V., Etchison, J. R., Haak, R., Manzi, A., & Freeze, H. H. (1996). A lysosomal cysteine proteinase from Dictyostelium discoideum contains N-acetylglucosamine-1-phosphate bound to serine but not mannose-6-phosphate on N-linked oligosaccharides. Journal of Biological Chemistry, 271, 10897–10903. https://doi.org/10.1074/jbc.271.18.10897
Kabir, A. K. M. S., Matin, M. M., Mridha, M. A. U., & Shahed, S. M. (1998). Antifungal activities of some methyl 6-O-trityl-α-D-mannopyranosides. The Chittagong University Journal of Science, 22(1), 41–46. ISSN: 1561-1167
Stowell, S. R., Karmakar, S., Stowell, C. J., Dias-Baruffi, M., Mcever, R. P., & Cummings, R. D. (2007). Human galectin-1,-2, and-4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood, 109, 219–227. https://doi.org/10.1182/blood-2006-03-007153
Matin, M. M., Bhuiyan, M. M. H., Hossain, M. M., & Roshid, M. H. O. (2015). Synthesis and comparative antibacterial studies of some benzylidene monosaccharide benzoates. Journal of the Turkish Chemical Society Section A: Chemistry, 2(4), 12–21. https://doi.org/10.18596/jotcsa.83708
Dodd, R. B., & Drickamer, K. (2001). Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology, 11, 71R–79R. https://doi.org/10.1093/glycob/11.5.71R
Slovin, S. F., Keding, S. J., & Ragupathi, G. (2005). Carbohydrate vaccines as immunotherapy for cancer. Immunology & Cell Biology, 83, 418–428. https://doi.org/10.1111/j.1440-1711.2005.01350.x
Kim, H. J., Kang, S. H., Choi, S. S., & Kim, E. S. (2017). Redesign of antifungal polyene glycosylation: engineered biosynthesis of disaccharide-modified NPP. Applied Microbiology & Biotechnology, 101, 5131–5137. https://doi.org/10.1007/s00253-017-8303-8
Aragao-Leoneti, V., Campo, V. L., Gomes, A. S., Field, R. A., Carvalho, I. (2010). Application of copper (I)-catalysed azide/alkyne cycloaddition (CuAAC)‘click chemistry’in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron, 66, 9475–9492. https://doi.org/10.1016/j.tet.2010.10.001
Kabir, A. K. M. S., Matin, M. M., & Kawsar, S. M. A. (1998). Synthesis and antibacterial activities of some uridine derivatives. The Chittagong University Journal of Science, 22(1), 13-18. ISSN: 1561-1167
Stowell, S. R., Qian, Y., Karmakar, S., Koyama, N. S., Dias-Baruffi, M., Leffler, H., McEver, R. P., & Cummings, R. D. (2008). Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. Journal of Immunology, 180, 3091–3102. https://doi.org/10.4049/jimmunol.180.5.3091
Matin, M. M., & Ibrahim, M. (2010). Synthesis of some methyl 4-O-octanoyl-α-L-rhamnopyranoside derivatives. Journal of Applied Sciences Research, 6(10), 1527–1532. ISSN: 1819-544X
Matin, M. M. (2008). One step intramolecular cyclization of diol via mesylation: Efficient synthesis of sugar derived [1,4]oxazepanes. Journal of the Bangladesh Chemical Society, 21(2), 179–183. ISSN: 1022-016X
Lutz, J. F. (2007). 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angewandte Chemie International Edition, 46, 1018–1025. https://doi.org/10.1002/anie.200604050
Pöhnlein, M., Slomka, C., Kukharenko, O., et al. (2014). Enzymatic synthesis of amino sugar fatty acid esters. European Journal of Lipid Science & Technology, 116, 423–428. https://doi.org/10.1002/ejlt.201300380
Grzywacz, D., Liberek, B., & Myszka, H. (2020). Synthesis, modification and biological activity of diosgenyl β-d-glycosaminosides: An overview. Molecules, 25, e5433. https://doi.org/10.3390/molecules25225433
Wolfrom, M. L., & Bhat, H. M. (1967). Trichloroacetyl and trifluoroacetyl as N-blocking groups in nucleoside synthesis with 2-amino sugars. Journal of Organic Chemistry, 32, 1821–1823. https://doi.org/10.1021/jo01281a025
Matin, M. M. (2006). N-Butylation and N-acetylation of a sugar-derived β-aminoester. The Chittagong University Journal of Science, 30(1), 35–39. ISSN: 1561-1167
Imran, M., Shah, M. R., Ullah, F., Ullah, S., Sadiq, A., Ali, I., Ahmed, F., & Nawaz, W. (2017). Double-tailed acyl glycoside niosomal nanocarrier for enhanced oral bioavailability of Cefixime. Artificial Cells, Nanomedicine, and Biotechnology, 45(7), 1440–1451. https://doi.org/10.1080/21691401.2016.1246451
Matin, M. M., & Iqbal, M. Z. (2008). Synthesis and antimicrobial evaluation of some methyl 4-O-decanoyl-α-L-rhamnopyranoside derivatives. Proceedings of the Bangladesh Chemical Congress, 254–263. https://doi.org/10.13140/2.1.3710.8008
Muzzalupo, R., Tavano, L., & La Mesa, C. (2013). Alkyl glucopyranoside-based niosomes containing methotrexate for pharmaceutical applications: evaluation of physico-chemical and biological properties. International Journal of Pharmaceutics, Vol.458, 224–229. http://doi.org/10.1016/j.ijpharm.2013.09.011
Bhuiyan, M. M. H., Matin, M. M., Rahman, A. F. M. H., & Alam, M. R. (2019). Synthesis and biological evaluation of sugar induced thiazole derivatives. The Chittagong University Journal of Science, Vol.41, No.1, 68–84. http://doi.org/10.3329/cujs.v41i1.51915
Matin, M. M., & Ibrahim, M. (2006). Synthesis of 2,3-di-O-substituted derivatives of methyl 4-O-acetyl-α-L-rhamnopyranoside. The Chittagong University Journal of Science, 30(2), 67-76. ISSN: 1561-1167
Singh, D., Pradhan, M., Nag M., & Singh, M. R. (2015). Vesicular system: versatile carrier for transdermal delivery of bioactives. Artificial Cells, Nanomedicine, and Biotechnology, 43, 282–290. https://doi.org/10.3109/21691401.2014.883401
Kabir, A. K. M. S., & Matin, M. M. (1994). Regioselective acylation of a derivative of L-rhamonse using the dibutyltin oxide method. Journal of the Bangladesh Chemical Society, 7(1), 73–79. ISSN: 1022-016X
Matin, M. M., Bhuiyan, M. M. H., Azad, A. K. M. S., Bhattacharjee, S. C. & Rashid, M. H. O. (2014). Synthesis and antimicrobial studies of 6-O-lauroyl-1,2-O-isopropylidene-α-D-gluco-furanose derivatives. Chemistry & Biology Interface, 4(4), 223–231. ISSN: 2249-4820
Matin, M. M., Bhattacharjee, S. C., Hoque, M. S., & Ahamed, F. (2019). Antibacterial activity of some medicinal plants against carbapenem-resistant Acinetobacter baumannii isolated from patients. European Journal of Pharmaceutical and Medical Research, 6(7), 111–116. ISSN: 2394-3211
Matin, M. M., Roshid, M. H. O., Bhattacharjee, S. C., & Azad, A. K. M. S. (2020). PASS predication, antiviral, in vitro antimicrobial, and ADMET studies of rhamnopyranoside esters. Medical Research Archives, Vol.8, No.7, 2165. https://doi.org/10.18103/mra.v8i7.2165
Bhattacharjee, S. C., Matin, M. M., & Nasiruddin, M. (2019). Insecticidal effects of two medicinal plants Polygonum hydropiper L. and Abrus precatorius L. leaves against the rice weevil Sitophilus oryzae L. (Coleoptera: Curculionidae). Journal of Biodiversity Conservation and Bioresource Management, 5(2), 107–114. https://doi.org/10.3329/jbcbm.v5i2.44921
Filimonov D. A., Lagunin A. A., Gloriozova T. A., Rudik A. V., Druzhilovskii D. S., Pogodin P. V., & Poroikov V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
Chowdhury, S. A., Chakraborty, P., Kawsar, S. M. A., Bhuiyan, M. M. H., & Matin, M. M. (2018). Regioselective acylation, PASS prediction and antimicrobial properties of some protected glucopyranosides, Journal of the Bangladesh Chemical Society, 30(1), 1–9. ISSN: 1022-016X
Matin, M. M., Nath, A. R., Saad, O., Bhuiyan, M. M. H., Kadir, F. A., Abd Hamid, S. B., Alhadi, A. A., Ali, M. E., & Yehye, W. A. (2016). Synthesis, PASS-predication and in vitro antimicrobial activity of benzyl 4-O-benzoyl-α-L-rhamnopyranoside derivatives, International Journal of Molecular Sciences, 17(9), 1412. https://doi.org/10.3390/ijms17091412
Rahim, A., Bhuiyan, M. M. H., Matin, M. M., Ali, R., & Kabir, E. (2018). Synthesis of 2-phenylchromen-4-one derivatives by conventional and microwave assisted techniques and their antimicrobial evaluation, International Journal of Chemical Studies, 6(1), 1644–1647. ISSN: 2349-8528
Matin, M. M., Islam, N., Siddika, A., & Bhattacharjee, S. C. (2021). Regioselective synthesis of some rhamnopyranoside esters for PASS predication, and ADMET studies. Journal of the Turkish Chemical Society Section A: Chemistry, 8(1), 363–374. https://doi.org/10.18596/jotcsa.829658
Islam, N., Islam, M. D., Rahman, M. R., & Matin, M. M. (2021). Octyl 6-O-hexanoyl-β-D-glucopyranosides: Synthesis, PASS, antibacterial, in silico ADMET, and DFT studies. Current Chemistry Letters, 10(4), 413–426. https://doi.org/10.5267/j.ccl.2021.5.003
Hanee, U., Rahman, M. R., & Matin, M. M. (2021). Synthesis, PASS, in silico ADMET, and thermodynamic studies of some galactopyranoside esters, Physical Chemistry Research, 9(4), 591–603. https://doi.org/10.22036/pcr.2021.282956.1911
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., et al. (2013). Gaussian 09W, Revision D.01. Gaussian, Inc., Wallingford CT.
Uzzaman, M., Hasan, M. K., Mahmud, S., Fatema, K., & Matin, M. M. (2021). Structure-based design of new diclofenac: Physicochemical, spectral, molecular docking, dynamics simulation and ADMET studies. Informatics in Medicine Unlocked, 25, 100677. https://doi.org/10.1016/j.imu.2021.100677
Islam, F., Rahman, M. R., & Matin, M. M. (2021). The effects of protecting and acyl groups on the conformation of benzyl α-L-rhamnopyranosides: An in silico study. Turkish Computational and Theoretical Chemistry, 5(1), 39–50. https://doi.org/10.33435/tcandtc.914768
Matin, M. M., & Chakraborty, P. (2020). Synthesis, spectral and DFT characterization, PASS predication, antimicrobial, and ADMET studies of some novel mannopyranoside esters. Journal of Applied Science & Process Engineering, 7(2), 572–586. https://doi.org/10.33736/jaspe.2603.2020
Matin, M. M., & Iqbal, M. Z. (2021). Methyl 4-O-(2-chlorobenzoyl)-α-L-rhamnopyranosides: Synthesis, characterization, and thermodynamic studies. Orbital: The Electronic Journal of Chemistry, 13(1), 19–27. http://dx.doi.org/10.17807/orbital.v13i1.1532
Azam, F., Alabdullah, N. H., Ehmedat, H. M., Abulifa, A. R., Taban, I., & Upadhyayula, S. (2018). NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer’s disease: an investigation by docking, molecular dynamics, and DFT studies, Journal of Biomolecular Structure and Dynamics, 36, 2099–2117. https://doi.org/10.1080/07391102.2017.1338164
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Report, 7, 42717. https://doi.org/10.1038/srep42717
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., et al. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52, 3099–3105. https://doi.org/10.1021/ci300367a
Rahim, A., Bhuiyan, M. M. H., & Matin, M. M. (2020). Microwave assisted efficient synthesis of some flavones for antimicrobial and ADMET studies. Journal of Scientific Research, 12(4), 673–685. http://dx.doi.org/10.3329/jsr.v12i4.45523
Matin, M. M., Bhattacharjee, S. C., Chakraborty, P., & Alam M. S. (2019). Synthesis, PASS predication, in vitro antimicrobial evaluation and pharmacokinetic study of novel n-octyl glucopyranoside esters, Carbohydrate Research, 485, 107812. https://doi.org/10.1016/j.carres.2019.107812
Matin, M. M., Bhuiyan, M. M. H., Kabir, E., Sanaullah, A. F. M., Rahman, M. A., Hossain, M. E., & Uzzaman, M. (2019). Synthesis, characterization, ADMET, PASS predication, and antimicrobial study of 6-O-lauroyl mannopyranosides. Journal of Molecular Structure, 1195, 189–197. https://doi.org/10.1016/j.molstruc.2019.05.102
Awual, M. R. (2017). Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chemical Engineering Journal, 307, 456-465. https://doi.org/10.1016/j.cej.2016.08.108
Awual, M. R. (2017). New type mesoporous conjugate material for selective optical copper(II) ions monitoring & removal from polluted waters. Chemical Engineering Journal, 307, 85-94. https://doi.org/10.1016/j.cej.2016.07.110
Matin, M. M., Chakraborty, P., Alam M. S., Islam, M. M., & Hanee, U. (2020). Novel mannopyranoside esters as sterol 14α-demethylase inhibitors: Synthesis, PASS predication, molecular docking, and pharmacokinetic studies. Carbohydrate Research, 496, 108130. https://doi.org/10.1016/j.carres.2020.108130
Matin, M. M., Hasan, M. S., Uzzaman, M., Bhuiyan, M. M. H., Kibria, S. M., Hossain, M. E., & Roshid, M. H. O. (2020). Synthesis, spectroscopic characterization, molecular docking, and ADMET studies of mannopyranoside esters as antimicrobial agents. Journal of Molecular Structure, 1222, 128821. https://doi.org/10.1016/j.molstruc.2020.128821
Matin, M. M., Uzzaman, M., Chowdhury, S. A., & Bhuiyan, M. M. H. (2020). In vitro antimicrobial, physicochemical, pharmacokinetics, and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 1-13. https://doi.org/10.1080/07391102.2020.1850358
Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.
To download Copyright Transfer Statement for Journal, click here