Assessing the Relationship among the Land Surface Features: A Geographic Information System (GIS) and Remote Sensing (RS) Based Approach for City Area

  • Sharmin Siddika Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna 9203
  • Md. Nazmul Haque Department of Urban and Regional Planning, Khulna University of Engineering & Technology, Khulna- 9203
  • Mizbah Ahmed Sresto Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna 9203
Keywords: Environment, Land use land cover, Land Surface Features, Remote Sensing


Due to climate change and urbanization, it is important to monitor and evaluate the components of the environment. For this reason, ward-22 and ward-27 of the Khulna City Corporation (KCC) area have been selected for the study. This research seeks to identify the existing land use profile and assess the land surface components such as topography, Normalized Difference Buildup Index (NDBI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Normalized Difference Salinity Index (NDSI) and Land Surface Temperature (LST) to measure the relationships among the land surface components. The land use land cover map shows that about 59% of ward-22 and 71.5% area of ward-27 are built-up areas. Both of the wards contain little amount of water body, vegetation and open space. Both of the wards have residential land use types with commercial purposes on the periphery. Accordingly, 63.32% and 65% of structures of ward-22 and 27 are pucca. The land surface components reveal that both areas contain lower slopes, less vegetation, less moisture, severe salinity, highly built-up areas, and high land surface temperature. The relationships among the land surface components show that NDVI has a negative relation with LST and NDBI whereas NDVI represents a positive correlation with NDMI. On the other hand, NDBI shows a positive correlation with LST whereas NDMI negatively correlates with LST. NDSI and topography reflect no meaningful relationship between NDBI, NDVI, LST, and NDMI. However, the research findings may be essential to city planners and decision-makers for incorporating better urban management at the micro level concerning climate change.


Jabbar, M. T., & Zhou, X. (2011). Eco-environmental change detection by using remote sensing and GIS techniques: a case study Basrah province, south part of Iraq. Environmental Earth Science, 64, 1397–1407. DOI 10.1007/s12665-011-0964-5.

Wang, H., Zhou, X., Zhou, X., Fu, H., Zhang, F., & Ren, J. (2008). Eco-environmental degradation in the northeastern margin of the Qinghai–Tibetan Plateau and comprehensive ecological protection planning. Environ Geol, 55, 1135–1147. DOI 10.1007/s00254-007-1061-7.

Turner, R. K., van den Bergh, J. C., Söderqvist, T., Barendregt, A., Straaten, J. v., & Maltby, E. (2000). Ecological-economic analysis of wetlands: scientificintegration for management and policy. Ecological Economics, 35, 7-23.

Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347-359.

Rahaman, S., Kumar, P., Chen, R., Meadows, M. E., & Singh, R. B. (2020). Remote Sensing Assessment of the Impact of Land Use and Land Cover Change on the Environment of Barddhaman District, West Bengal, India. Front. Environ. Sci, 8(127), 1-15.

Sharma, R., Chakraborty, A., & Joshi, P. K. (2015). Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environ Monit Assess, 87(4206), 1-12. DOI 10.1007/s10661-014-4206-7.

Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528-531.

Taubenböck, H., Wegmann, M., Roth, A., & Mehl, H. (2009). Urbanization in India – Spatiotemporal analysis using remote sensing data . Computers Environment and Urban Systems, 33(3), 179-188. DOI:10.1016/j.compenvurbsys.2008.09.003.

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global Change and the Ecology of Cities. Science, 319(5864), 756-760.

Taufik, A., & Ahmad, S. S. (2016). Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach. Earth and Environmental Science, 37, 1-8. doi:10.1088/1755-1315/37/1/012062.

Oliver, T. H., & Morecroft, M. D. (2014). Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. WIREs Climate Change, 5(3), 317-335.

Baeza, S., & Paruelo, J. M. (2020). Land Use/Land Cover Change (2000–2014) in the Rio de la Plata Grasslands: An Analysis Based on MODIS NDVI Time Series. Remote sensing, 12(3),

Zhang, W., Zhu, Y., & Jiang, J. (2016). Effect of the Urbanization of Wetlands on Microclimate: A Case Study of Xixi Wetland, Hangzhou, China. Sustainability, 8(9), 85.

Malik, M. S., Shukla, J. P., & Mishra, S. (2019). Relationship of LST, NDBI and NDVI using Landsat-8 data in Kandaihimmat Watershed, Hoshangabad, India. Indian Journal of Geo Marine Sciences , 48(1), 25-31.

Julien, Y., & Sobrino, J. A. (2009). The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote Sensing of Environment, 113, 329-334. doi:10.1016/j.rse.2008.09.016.

SZABÓ, S., GÁCSI, Z., & BALÁZS, B. (2016). SPECIFIC FEATURES OF NDVI, NDWI AND MNDWI AS REFLECTED IN LAND COVER CATEGORIES. Landscape & Environment, 10(3-4), 194-202. DOI: 10.21120/LE/10/3-4/13.

Weng, Q., Lu, D., & Liang, B. (2006). Urban Surface Biophysical Descriptors and Land Surface Temperature Variations. Photogrammetric Engineering & Remote Sensing, 72(11), 1275–1286.

Zhou, W., Huang, G., & Cadenasso, M. (2011). Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54-63. DOI:10.1016/j.landurbplan.2011.03.009.

JICA. (2012). Profile on Environmental and Social Considerations in Bangladesh. Dhaka, Bangladesh: JICA.

Agrawala, S., Ota, T., Ahmed, A. U., Smith, J., & Aalst, M. v. (2003). Development and Climate Change in Bangladesh: Focus on Coastal Flooding and the Sundarbans. Paris, France: OECD.

Haque, M. N., Siddika, S., Sresto, M. A., Saroar, M. M., & Shabab, K. R. (2021). Geo-spatial Analysis for Flash Flood Susceptibility Mapping in the North-East Haor (Wetland) Region in Bangladesh. Earth Systems and Environment, 5, 365–384. .

MFA. (2018). Climate Change Profile Bangladesh. Dhaka: Ministry of Foreign Affairs.

Alam, M. S., & Mondal, M. (2019). Assessment of sanitation service quality in urban slums of Khulna city based on SERVQUAL and AHP model: A case study of railway slum, Khulna, Bangladesh. Journal of Urban Management, 8(1), 20-27.

Haque, M. N., Sresto, M. A., & Siddika, S. (2021). Suitable Locations for Industrial Setup in Urban Context: Way Forward To Meet the SDGs for Khulna City, Bangladesh. International Journal of Built Environment and Sustainability, 8(2), 89-102. DOI: 10.11113/ ijbes.v8.n2.679.


Ahmed, B., Kamruzzaman, M., Zhu , X., Rahman , M. S., & Cho, K. (2013). Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sensing, 5, 5969-5998. doi:10.3390/rs5115969.

Al-Hanbali, A., Alsaaideh, B., & Kondoh, A. (2011). Using GIS-Based Weighted Linear Combination Analysis and Remote Sensing Techniques to Select Optimum Solid Waste Disposal Sites within Mafraq City, Jordan. Journal of Geographic Information System, 3, 267-278.doi:10.4236/jgis.2011.34023.

Stibig, H. J., Belward, A. S., Roy, P. S., Wasrin, R., Agarwal, S., Joshi, P. K., . . . Giri, C. (2006). A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data. Journal of Biogeography, 34(4), 625-637.

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.

Kafy, A. -A., Faisal, A. A., Sikdar, S., & Hasan, M. M. (2020). Impact of LULC Changes on LST in Rajshahi District of Bangladesh: A Remote Sensing Approach. Journal of Geographical Studies, 3(1), 11-23. DOI:10.21523/gcj5.19030102.

Georgiana, G., & Urițescu, B. (2019). Land Use/Land Cover changes dynamics and their effects on Surface Urban Heat Island in Bucharest, Romania. International Journal of Applied Earth Observation and Geoinformation, 80, 115-126. DOI:10.1016/j.jag.2019.03.009.

Bishta, A. Z. (2018). Assessment of the reliability of supervised classifications of Landsat-7, ASTER, and SPOT-5 multispectral data in rock unit discriminations of Jabal Daf-Wadi Fatima area, Saudi Arabia. Arabian Journal of Geosciences, 11(755), 2-21.

Zhang, Y., Gao, J., Liu, L., Wang, Z., Ding, M., & Yang, X. (2013). NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Global and Planetary Change, 108, 139-148.

Pontius Jr , R. G., & Millones , M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429.

Yadav, K., & Congalton, R. G. (2019). Accuracy Assessment of Global Food Security-Support Analysis Data (GFSAD) Cropland Extent Maps Produced at Three Different Spatial Resolutions. Remote Sensing, 11(6). DOI:10.3390/rs11060630630.

Zhang, Y., Odeh, I., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinformation, 11, 256-264. DOI:10.1016/j.jag.2009.03.001.

Dash , P., Göttsche , F. M., Olesen , F. S., & Fischer , H. (2002). Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. International Journal of Remote Sensing, 23(13), 2563-2594.

Alam, M. Z., Boggs, L. C., Mitra, S., & Haque, M. M. (2017). Effect of Salinity Intrusion on Food Crops, Livestock, and Fish Species at Kalapara Coastal Belt in Bangladesh. Journal of Food Quality, 1-23.

Azabdaftari , A., & Sunar, F. (2016). SOIL SALINITY MAPPING USING MULTITEMPORAL LANDSAT DATA. SOIL SALINITY MAPPING USING MULTITEMPORAL LANDSAT DATAThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B7, 1-7. doi:10.5194/isprsarchives-XLI-B7-3-2016.

Khan, N. M., Rastoskuev, V. V., Shalina, E. V., & Sato, Y. (2001). Mapping Salt-affected Soils Using Remote Sensing Indicators- A Simple Approach with the Use of GIS IDRISI. 22nd Asian Conference on Remote Sensing, 2001. Singapore: National University of Singapore.

Sresto, M.A., Siddika, S., Haque, M.N. et al. (2021). Groundwater vulnerability assessment in Khulna district of Bangladesh by integrating fuzzy algorithm and DRASTIC (DRASTIC-L) model. Model. Earth Syst. Environ.

Mizbah Ahmed Sresto, Sharmin Siddika, Md. Nazmul Haque, Mustafa Saroar. (2021). Application of fuzzy analytic hierarchy process and geospatial technology to identify groundwater potential zones in north-west region of Bangladesh. Environmental Challenges,

How to Cite
Sharmin Siddika, Haque, M. N., & Mizbah Ahmed Sresto. (2021). Assessing the Relationship among the Land Surface Features: A Geographic Information System (GIS) and Remote Sensing (RS) Based Approach for City Area. Journal of Applied Science & Process Engineering, 8(2), 935-952.