Automated Classification of Breast Cancer Lesions for Digitised Mammograms via Computer-Aided Diagnosis System

Authors

  • Saifullah Harith Suradi School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), 21300 Kuala Nerus, Terengganu, Malaysia
  • Kamarul Amin Abdullah School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), 21300 Kuala Nerus, Terengganu, Malaysia & Medical Imaging Research Group (MIRG), Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), 21300 Kuala Nerus, Terengganu, Malaysia
  • Nor Ashidi Mat Isa School of Electrical and Electronic Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

DOI:

https://doi.org/10.33736/jaspe.3517.2021

Keywords:

Breast imaging, Computed aided diagnosis, Medical image processing, medical imaging

Abstract

Women with breast cancer have a high risk of death. Digitised mammograms can be used to detect the early stage of breast cancer. However, digitised mammograms suffer low contrast appearances that may lead to misdiagnosis. This paper proposes a Computer-Aided Diagnosis (CAD) system of automated classification of breast cancer lesions using a modified image processing technique of Fuzzy Anisotropic Diffusion Histogram Equalization Contrast Adaptive Limited (FADHECAL) incorporated with Multilevel Otsu Thresholding on digitised mammograms. Four main blocks were used in this CAD system, namely; (i) Pre-processing and Enhancement block; (ii) Segmentation block; (iii) Region of Interests (ROIs) Extraction block; and (iv) Classification block. The CAD system was tested on 30 digitised mammograms retrieved from the Mini-Mammographic Image Analysis Society (MIAS) database with various degrees of severity and background tissues. The proposed CAD system showed a high accuracy of 96.67% for the detection of breast cancer lesions.

References

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660

Suppaya, K., Nasir, F. M., & Ab Ghani, A. (2020). Variations of Bi-Rads 5 in Mammography by Age, Ethnicity, and Breast Density: A Retrospective Study in University Malaya Medical Centre. Asian Journal of Medicine and Biomedicine, 4(SI 1), 11-16. https://doi.org/10.37231/ajmb.2020.4.SI%201.394

Ravi, D.A. and Ismail, N. F. (2021). Knowledge And Awareness Of Breast Cancer And Mammography Among Women In Klang, Selangor. Malaysian Journal of Applied Sciences, 6(1), 15-20.. https://doi.org/https://doi.org/10.37231/myjas.2021.6.1.265Isa, N. A. M., & Siong, T. S. (2012). Automatic segmentation and detection of mass in digital mammograms. Recent researches in communications, signals and information technology, 143-146. ISBN: 978-1-61804-081-7

Helvie, M. A. (2010). Digital mammography imaging: breast tomosynthesis and advanced applications. Radiologic Clinics, 48(5), 917-929. DOI:https://doi.org/10.1016/j.rcl.2010.06.009

Paramkusham, S., Rao, K. M., & Rao, B. P. (2013, September). Early stage detection of breast cancer using novel image processing techniques, Matlab and Labview implementation. In 2013 15th International Conference on Advanced Computing Technologies (ICACT), IEEE, 1-5. https://doi.org/10.1109/ICACT.2013.6710511

Abdallah, Y. M., Elgak, S., Zain, H., Rafiq, M., Ebaid, E. A., & Elnaema, A. A. (2018). Breast cancer detection using image enhancement and segmentation algorithms. Biomedical Research, 29(20), 3732-3736. https://doi.org/10.4066/biomedicalresearch.29-18-1106

ARazek, N. M. A., Yousef, W. A., & Mustafa, W. A. (2013). Microcalcification detection with and without CAD system (LIBCAD): A comparative study. The Egyptian Journal of Radiology and Nuclear Medicine, 44(2), 397-404. https://doi.org/10.1016/j.ejrnm.2013.01.009

Masud, R., Al-Rei, M., & Lokker, C. (2019). Computer-aided detection for breast cancer screening in clinical settings: scoping review. JMIR medical informatics, 7(3), e12660. doi: 10.2196/12660

Hadjiiski, L., Chan, H. P., Sahiner, B., Helvie, M. A., Roubidoux, M. A., Blane, C., ... & Shen, J. (2004). Improvement in radiologists’ characterization of malignant and benign breast masses on serial mammograms with computer-aided diagnosis: an ROC study. Radiology, 233(1), 255-265. https://doi.org/10.1148/radiol.2331030432

Baker, J. A., Rosen, E. L., Lo, J. Y., Gimenez, E. I., Walsh, R., & Soo, M. S. (2003). Computer-aided detection (CAD) in screening mammography: sensitivity of commercial CAD systems for detecting architectural distortion. American Journal of Roentgenology, 181(4), 1083-1088. https://doi.org/10.2214/ajr.181.4.1811083

Makandar, A., & Halalli, B. (2016). Threshold based segmentation technique for mass detection in mammography. J Comput, 11(6), 472-478. https://doi.org/10.17706/jcp.11.6.463-4712

Suradi, S. H., Abdullah, K. A., & Isa, N. A. M. (2021, April). Breast Lesions Detection Using FADHECAL and Multilevel Otsu Thresholding Segmentation in Digital Mammograms. In International Conference on Medical and Biological Engineering, Springer, Cham, 751-759. https://doi.org/10.1007/978-3-030-73909-6_85

Clark, A.F. (2012) The mini-MIAS database of mammograms. http://peipa.essex.ac.uk/info/mias.html

Goh, T. Y., Basah, S. N., Yazid, H., Safar, M. J. A., & Saad, F. S. A. (2018). Performance analysis of image thresholding: Otsu technique. Measurement, 114, 298-307. https://doi.org/10.1016/j.measurement.2017.09.052

Don, S., Choi, E., & Min, D. (2011, September). Breast mass segmentation in digital mammography using graph cuts. In International Conference on Hybrid Information Technology, Springer, Berlin, Heidelberg, 88-96. https://doi.org/10.1007/978-3-642-24106-2_12

Guzmán-Cabrera, R., Guzmán-Sepúlveda, J. R., Torres-Cisneros, M., May-Arrioja, D. A., Ruiz-Pinales, J., Ibarra-Manzano, O. G., ... & Parada, A. G. (2013). Digital image processing technique for breast cancer detection. International Journal of Thermophysics, 34(8-9), 1519-1531. https://doi.org/10.1007/s10765-012-1328-4

Downloads

Published

2021-10-31

How to Cite

Suradi, S. H., Abdullah, K. A., & Isa, N. A. M. . (2021). Automated Classification of Breast Cancer Lesions for Digitised Mammograms via Computer-Aided Diagnosis System. Journal of Applied Science &Amp; Process Engineering, 8(2), 892–902. https://doi.org/10.33736/jaspe.3517.2021