Management for Paddy, Oil Palm, and Pineapple Plantations in Malaysia: Current Status and Reviews


  • Sahil Mohedin Hawa Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
  • Hillry Gibson Anak Panjang Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
  • Ericson Nyagang Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
  • Wan Sieng Yeo Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
  • Agus Saptoro Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
  • Shiew Wei Lau Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
  • Tze Khiun Jong Botanium Agro-Tech (M) Sdn. Bhd., Lot 1780, Taman Tunku Industrial Estate, 98000 Miri, Sarawak, Malaysia.
  • Alex Choon Teck Jong Koperasi Pembangunan Pertanian Bersatu Timur Bhd., Senandin, Miri, Sarawak, Malaysia.



Nutrients, Paddy, Oil Palm, Pineapple, Fertiliser.


Heavy rainfall causes a loss of fertiliser to the environment, and it leads to environmental issues such as eutrophication. Replenishment of fertiliser to replace the loss imposes a financial impact since frequent applications are costly and labour intensive. Therefore, investigations on proper fertiliser application in maintaining good soil pH, improving plant growth, and increasing crop yield from various plantations across Malaysia are of paramount importance. Meanwhile, limited agricultural-related studies about crop management in Malaysia have been done. This study presents a state-of-the-art review of Malaysia’s paddy, oil palm, pineapple plantations, and the existing nutrient management and fertilisation practices throughout the crop cycle. A systematic study of the existing crop management in terms of farming practices, nutrient management, and fertiliser application on the plantations of paddy, oil palm, and pineapple in Malaysia was carried out. Industry overviews for these three crop types based on past situations and future directions are also included. Recommendations on how to better manage these plantations are also outlined to promote a better understanding of the past, current, and future direction of the agricultural activities and management for principal edible crops like paddy, oil palm, and pineapple in Malaysia.


Xu, Y., Ma, K., Zhao, Y., Wang, X., Zhou, K., Yu, G., Li, C., Li, P., Yang, Z., Xu, C., & Xu, S. (2021, 2021/06/01/). Genomic selection: A breakthrough technology in rice breeding. The Crop Journal, 9(3), 669-677.

Shahbandeh, M. (2020). World production volume of milled rice from 2008/2009 to 2019/2020.

Dong, W., Zhang, X., Wang, H., Dai, X., Sun, X., Qiu, W., & Yang, F. (2012). Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PloS one, 7(9).

Malaysian Palm Oil Board. (2017). Malaysian Oil Palm Statistics 2016 (1511743X).

Young, K. I., Buenemann, M., Vasilakis, N., Perera, D., & Hanley, K. A. (2021, 2021/04/01). Shifts in mosquito diversity and abundance along a gradient from oil palm plantations to conterminous forests in Borneo ]. Ecosphere, 12(4), e03463.

Euler, M., Hoffmann, M. P., Fathoni, Z., & Schwarze, S. (2016, 2016/07/01/). Exploring yield gaps in smallholder oil palm production systems in eastern Sumatra, Indonesia. Agricultural Systems, 146, 111-119.

Malaysian Palm Oil Board. (2019). Oil Palm Planted Areas 2019.

Malaysian Palm Oil Board. (2017). Review of The Malaysian Oil Palm Industry 2016. M. P. O. Board.

Abdullah, R. (2013). An analysis on trends of vegetable oil prices and some factors affecting. Oil Palm Indonesia Economic Journal, 13, 1-14.

Dardak, R. A. (2019). Trends in Production, Trade, and Consumption of Tropical fruits in Malaysia. F. a. F. T. f. t. A. a. P. Region.

Thalip, A. A., Tong, P.S., & Ng, C. (2015). The MD2 “Super Sweet” Pineapple (Ananas comosus). Utar Agriculture Science Journal, 1, 15-17. ISSN 2289-957X (2015)

Rehman, A., Chandio, A. A., Hussain, I., & Jingdong, L. (2019). Fertilizer consumption, water availability and credit distribution: Major factors affecting agricultural productivity in Pakistan. Journal of the Saudi Society of Agricultural Sciences, 18(3), 269-274.

Food and Agriculturure Organization of the United Nations. (2017). World Fertilizer Trends and Outlook to 2020. FAO.

Trenkel, M. E. (2010). Slow-and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. IFA, International fertilizer industry association.

Morgan, K. T., Cushman, K. E., & Sato, S. (2009). Release mechanisms for slow-and controlled-release fertilizers and strategies for their use in vegetable production. HortTechnology, 19(1), 10-12.

Simonne, E.H., & Hutchinson, C.M. (2005). Controlled-release fertilizers for vegetable in the era of best management practices: Teaching new tricks to an old dog. HortTechnology, 15, 36-46.

Huang, J., He, F., Cui, K., Buresh, R. J., Xu, B., Gong, W., & Peng, S. (2008). Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Research, 105(1-2), 70-80.

Fageria, V. (2001). Nutrient interactions in crop plants. Journal of plant nutrition, 24(8), 1269-1290.

Fageria, N. K., Baligar, V. C., & Jones, C. A. (2010). Growth and mineral nutrition of field crops. CRC Press.

Rietra, R. P., Heinen, M., Dimkpa, C. O., & Bindraban, P. S. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis, 48(16), 1895-1920.

Lai, C. H., Settinayake, A. R. H., Yeo, W. S., Lau, S. W., & Jong, T. K. (2019, 2019/09/25). Crop Nutrients Review and the Impact of Fertilizer on the Plantation in Malaysia: A Mini Review. Communications in Soil Science and Plant Analysis, 50(17), 2089-2105.

Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012.

Pittol, M., Scully, E., Miller, D., Durso, L., Mariana Fiuza, L., & Valiati, V. H. (2018). Bacterial community of the rice floodwater using cultivation-independent approaches. International Journal of Microbiology, 2018.

Doni, F., Al-Shorgani, N. K. N., Abuelhassan, N. N., Isahak, A., Zain, C. R. C. M., & Yusoff, W. M. W. (2013). Microbial involvement in growth of paddy. Current Research Journal of Biological Sciences, 5(6), 285-290. ISSN:2041-076X

Chauhan, H., Bagyaraj, D., Selvakumar, G., & Sundaram, S. (2015). Novel plant growth promoting rhizobacteria—Prospects and potential. Applied Soil Ecology, 95, 38-53.

Paungfoo-Lonhienne, C., Redding, M., Pratt, C., & Wang, W. (2019). Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. Journal of environmental management, 233, 337-341.

Mhatre, P. H., Karthik, C., Kadirvelu, K., Divya, K., Venkatasalam, E., Srinivasan, S., Ramkumar, G., Saranya, C., & Shanmuganathan, R. (2019). Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and agricultural biotechnology, 17, 119-128.

Khatoon, H., Solanki, P., Narayan, M., Tewari, L., & Rai, J. (2017). Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. International Journal of Chemical Studies, 5(6), 1648-1656. E-ISSN: 2321–4902

Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor perspectives in biology, 2(5), a000414. doi:10.1101/cshperspect.a000414

Cornelis, P. (2010). Iron uptake and metabolism in pseudomonads. Applied microbiology and biotechnology, 86(6), 1637-1645.

Mohammadinejhad-Babandeh, S., Doroodian, H., & Besharati, H. (2012). Effect of bio-bacterial (Azetobacter, Azorhizobioum, Azospirilium) on yield and yield components of rice in Bandar-Anzali, north of Iran. Research Journal of Biological Sciences, 7(6), 244-249. ISSN :1815-8846

Tian, B., Yang, J., Lian, L., Wang, C., & Zhang, K. (2007). Role of neutral protease from Brevibacillus laterosporus in pathogenesis of nematode. Appl Microbiol Biotechnol, 74, 372-380.

Zaidi, A., Khan, M., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta microbiologica et immunologica Hungarica, 56(3), 263-284.

Siddiqui, I. A., Haas, D., & Heeb, S. (2005). Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl. Environ. Microbiol., 71(9), 5646-5649.

Mishra, D., & Sinha, A. (2000). Plant growth-promoting activity of some fungal and bacterial agents on rice seed germination and seedling growth. Tropical agriculture, 77(3), 188-191. ISSN: 0041-3216

Banaay, C., Cuevas, V., & Cruz, C. V. (2012). Trichoderma ghanense promotes plant growth and controls disease caused by Pythium arrhenomanes in seedlings of aerobic rice variety apo. The Philippine Agricultural Scientist, 95(2). ISSN 0031-7454

Amprayn, K.-o., Rose, M. T., Kecskés, M., Pereg, L., Nguyen, H. T., & Kennedy, I. R. (2012). Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Applied Soil Ecology, 61, 295-299.

Sohrabi, M., Rafii, M., Hanafi, M., Siti Nor Akmar, A., & Latif, M. (2012). Genetic diversity of upland rice germplasm in Malaysia based on quantitative traits. The Scientific World Journal, 2012.

Nazuri, N. S., & Man, N. (2016). Acceptance and practices on new paddy seed variety among farmers in MADA granary area. Academic Journal of Interdisciplinary Studies, 5(2), 105-105. DOI: 10.5901/ajis.2016.v5n2p105

Miah, G., Rafii, M. Y., Ismail, M. R., Puteh, A. B., Rahim, H. A., Islam, K., & Latif, M. A. (2013). A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. International journal of molecular sciences, 14(11), 22499-22528.

Suswanto, T., Shamshuddin, J., Syed Omar, S., Mat, P., & Teh, C. (2007). Effects of lime and fertiliser application in combination with water management on rice (Oryza sativa) cultivated on an acid sulfate soil. Malaysian Journal of Soil Science, 11, 1-16. ISSN: 1394-7990

Tzyy Jiann Chong, E., Poh Wah Goh, L., Jun Wong, J., Aziz, Z. A., Latip, M. A., & Lee, P.-C. (2018). Genetic Diversity and Relationship of Sabah Traditional Rice Varieties as Revealed by RAPD Markers. Pertanika Journal of Topical Agricultural Science, 41(1). ISSN: 1511-3701

Wang, Z. Y., Zheng, F. Q., Shen, G. Z., Gao, J. P., Snustad, D. P., Li, M. G., Zhang, J. L., & Hong, M. M. (1995). The amylose content in rice endosperm is related to the post‐transcriptional regulation of the waxy gene. The Plant Journal, 7(4), 613-622.

Chen, E., Huang, X., & Han, B. (2016). How can rice genetics benefit from rice-domestication study. National Science Review, 3(3), 278-280.

Confalonieri, R., Bregaglio, S., Rosenmund, A. S., Acutis, M., & Savin, I. (2011). A model for simulating the height of rice plants. European journal of agronomy, 34(1), 20-25.

Sritarapipat, T., Rakwatin, P., & Kasetkasem, T. (2014). Automatic rice crop height measurement using a field server and digital image processing. Sensors, 14(1), 900-926.

Majda, M., & Robert, S. (2018). The role of auxin in cell wall expansion. International journal of molecular sciences, 19(4), 951.

Zhang, Y., Yu, C., Lin, J., Liu, J., Liu, B., Wang, J., Huang, A., Li, H., & Zhao, T. (2017). OsMPH1 regulates plant height and improves grain yield in rice. PloS one, 12(7).

Ambhore, J. (2015). Aeromycological studies over maize and paddy crops. Lulu. com.

Zhang, B., Ye, W., Ren, D., Tian, P., Peng, Y., Gao, Y., Ruan, B., Wang, L., Zhang, G., & Guo, L. (2015). Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. Rice, 8(1), 2.

Flügge, U.-I., Westhoff, P., & Leister, D. (2016). Recent advances in understanding photosynthesis. F1000Research, 5.

Wang, P., Zhou, G., Yu, H., & Yu, S. (2011). Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theoretical and applied genetics, 123(8), 1319-1330. DOI 10.1007/s00122-011-1669-6

Yang, Y., Zhang, M., Xu, Q., Feng, Y., Yuan, X., Yu, H., Wang, Y., & Wei, X. (2018). Exploration of genetic selection in rice leaf length and width. Botany, 96(4), 249-256.

Wu, J., Qi, Y., Hu, G., Li, J., Li, Z., & Zhang, H. (2017). Genetic architecture of flag leaf length and width in rice (Oryza sativa L.) revealed by association mapping. Genes & Genomics, 39(3), 341-352. DOI 10.1007/s13258-016-0501-8

Yang, C., Yang, L., Yang, Y., & Ouyang, Z. (2004). Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agricultural Water Management, 70(1), 67-81.

Qu, Y., Mu, P., Zhang, H., Chen, C. Y., Gao, Y., Tian, Y., Wen, F., & Li, Z. (2008). Mapping QTLs of root morphological traits at different growth stages in rice. Genetica, 133(2), 187-200. DOI 10.1007/s10709-007-9199-5

Zhao, Y., Jiang, C.-h., Rehman, R. M. A., Zhang, H.-l., Li, J., & Li, Z.-c. (2019). Genetic analysis of roots and shoots in rice seedling by association mapping. Genes & genomics, 41(1), 95-105.

Chen, S., Wang, D., Xu, C., Ji, C., Zhang, X., Zhao, X., Zhang, X., & Chauhan, B. S. (2014). Responses of super rice (Oryza sativa L.) to different planting methods for grain yield and nitrogen-use efficiency in the single cropping season. PloS one, 9(8).

Ehsanullah, I. I., Ahmad, A., & Randhawa, S. A. (2000). Effect of direct seeding and transplanting methods on the yield and quality of fine rice Basmati-370. Indian Journal of Agroomy, 38, 547-550. 1560–8530/2000/02–3–251–252

Birhane, A. (2013). Effect of planting methods on yield and yield components of Rice (Oryza sativa L.) varieties in Tahtay Koraro Wereda, Northern Ethiopia. International Journal of Technology Enhancements and Emerging Engineering Research, 1(5), 1-5. ISSN 2347-4289

Ali, A., Erenstein, O., & Rahut, D. B. (2014). Impact of direct rice-sowing technology on rice producers’ earnings: Empirical evidence from Pakistan. Development Studies Research. An Open Access Journal, 1(1), 244-254.

Marasini, S., Joshi, T., & Amgain, L. (2016). Direct seeded rice cultivation method: a new technology for climate change and food security. Journal of Agriculture and Environment, 17, 30-38.

Naresh, R., Misra, A., & Singh, S. (2013). Assessment of direct seeded and transplanting methods of rice cultivars in the western part of Uttar Pradesh. International Journal, 1(1). ISSN: 2310-6913

Awan, T., Ahmad, M., Ashraf, M., & Ali, I. (2011). Effect of different transplanting methods on paddy yield and its components at farmer’s field in rice zone of Punjab. The Journal of Animal and Plant Sciences, 21(3), 498-502. ISSN: 1018-7081

Peng, S., Tang, Q., & Zou, Y. (2009). Current status and challenges of rice production in China. Plant Production Science, 12(1), 3-8.

Jing, F., & Yang, J.-c. (2012). Research advances in high-yielding cultivation and physiology of super rice. Rice Science, 19(3), 177-184.

Wang, D., Huang, J., Nie, L., Wang, F., Ling, X., Cui, K., Li, Y., & Peng, S. (2017). Integrated crop management practices for maximizing grain yield of double-season rice crop. Scientific reports, 7, 38982.

Wu, W., Nie, L., Liao, Y., Shah, F., Cui, K., Wang, Q., Lian, Y., & Huang, J. (2013). Toward yield improvement of early-season rice: Other options under double rice-cropping system in central China. European journal of agronomy, 45, 75-86.

Ray, D. K., & Foley, J. A. (2013). Increasing global crop harvest frequency: recent trends and future directions. Environmental Research Letters, 8(4), 044041.

Wu, X. H., Wang, W., Yin, C. M., Hou, H. J., Xie, K. J., & Xie, X. L. (2017). Water consumption, grain yield, and water productivity in response to field water management in double rice systems in China. PloS one, 12(12).

Bouman, B. (2009). How much water does rice use. Management, 69, 115-133.

Tuong, T. P., BAM, B., & Mortimer, M. (2005). More Rice, Less Water—Integrated Approaches for Increasing Water Productivity in Irrigated Rice-Based Systems in Asia—.Plant Production Science, 8(3), 231-241.

Tuong, T., & Bouman, B. (2003). Rice production in water-scarce environments. Water productivity in agriculture: Limits and opportunities for improvement, 1, 13-42. DOI : 10.1079/9780851996691.0053

Chen, J. H. (2006). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, 16(20), 1-11. DOI:10.30058/SE.200706.0001

Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11(5), 1485.

Boulter, J. I., Trevors, J. T., & Boland, G. J. (2002). Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression. World Journal of Microbiology and Biotechnology, 18(7), 661-671.

McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient management module, 8(2), 1-12.

Ilagan, L. A., Tablizo, R. P., Barba Jr, R. B., & Marquez, N. (2014). Soil fertility evaluation for rice production in Catanduanes Province, Philippines. International Journal of Scientific and Technology Research, 3(12), 81-87. ISSN 2277-8616

Othman, Z., Othman, S. N., & Ab Hamid, K. (2013). Pengurusan Pertanian Lestari di Luar Bandar: Kes Projek Agropolitan di Kawasan Terbiar. Prosiding PERKEM VIII, JILID, 2, 790-795. ISSN: 2231-962X

Nixon, S. W. (1995). Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41(1), 199-219.

Mohamed, Z., Terano, R., Shamsudin, M. N., & Abd Latif, I. (2016). Paddy farmers’ sustainability practices in granary areas in Malaysia. Resources, 5(2), 17.

Adhya, T. K., Lal, B., Mohapatra, B., Paul, D., & Das, S. (2018). Advances in soil microbiology: recent trends and future prospects. Springer. https:/

Murdoch, W. W., & Briggs, C. J. (1996). Theory for biological control: recent developments. Ecology, 77(7), 2001-2013.

Dou, F., Soriano, J., Tabien, R. E., & Chen, K. (2016). Soil texture and cultivar effects on rice (Oryza sativa, L.) grain yield, yield components and water productivity in three water regimes. PloS one, 11(3).

Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal, 64(2), 681-689.

Smith, S., & De Smet, I. (2012). Root system architecture: insights from Arabidopsis and cereal crops. In: The Royal Society.

McMichael, B., & Quisenberry, J. (1993). The impact of the soil environment on the growth of root systems. Environmental and Experimental Botany, 33(1), 53-61.

Wang, Y., Thorup-Kristensen, K., Jensen, L. S., & Magid, J. (2016). Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility. Frontiers in plant science, 7, 865.

Alam, M., Siwar, C., Talib, B., & Toriman, M. (2014). Impacts of climatic changes on paddy production in Malaysia: Micro study on IADA at North West Selangor. Alam, MM, Siwar, C., Talib, B., and Mohd Ekhwan, 251-258.

Hamidi, Z. S., Shariff, N., & Monstein, C. (2014). Understanding climate changes in Malaysia through space weather study. International Letters of Natural Sciences, 8(1). ISSN :2300-9675

Jamaludin, N., Mohammed, N. I., Khamidi, M. F., & Wahab, S. N. A. (2015). Thermal comfort of residential building in Malaysia at different micro-climates. Procedia-Social and Behavioral Sciences, 170, 613-623.

Yan, C., Ding, Y., Wang, Q., Liu, Z., Li, G., Muhammad, I., & Wang, S. (2010). The impact of relative humidity, genotypes and fertilizer application rates on panicle, leaf temperature, fertility and seed setting of rice. The Journal of Agricultural Science, 148(3), 329-339.

Ko, J., Kim, H.-Y., Jeong, S., An, J.-B., Choi, G., Kang, S., & Tenhunen, J. (2014). Potential impacts on climate change on paddy rice yield in mountainous highland terrains. Journal of Crop Science and Biotechnology, 17(3), 117-126. DOI No. 10.1007/s12892-013-0110-x

Wang, W., Xie, X., Chen, A., Yin, C., & Chen, W. (2013). Effects of long-term fertilization on soil carbon, nitrogen, phosphorus and rice yield. Journal of plant nutrition, 36(4), 551-561.

Masni, Z., & Wasli, M. (2019). Yield Performance and Nutrient Uptake of Red Rice Variety (MRM 16) at Different NPK Fertilizer Rates. International Journal of Agronomy, 2019.

Han, S. H., An, J. Y., Hwang, J., Kim, S. B., & Park, B. B. (2016). The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. Forest science and Technology, 12(3), 137-143.

Allen, P., & Kovach, M. (2000). The capitalist composition of organic: The potential of markets in fulfilling the promise of organic agriculture. Agriculture and human values, 17(3), 221-232.

Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., & Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PloS one, 14(5).

Li, Y. C., Li, Z. W., Lin, W. W., Jiang, Y. H., Weng, B. Q., & Lin, W. X. (2018). Effects of biochar and sheep manure on rhizospheric soil microbial community in continuous ratooning tea orchards. Ying yong sheng tai xue bao= The journal of applied ecology, 29(4), 1273-1282.

Masarirambi, M., Hlawe, M. M., Oseni, O. T., & Sibiya, T. (2010). Effects of organic fertilizers on growth, yield, quality and sensory evaluation of red lettuce (Lactuca sativa L.)'Veneza Roxa'. Agriculture and Biology Journal of North America, 1(6), 1319-1324. DOI : 10.5251/abjna.2010.1.6.1319.1324

Sharma, A., & Chetani, R. (2017). A review on the effect of organic and chemical fertilizers on plants. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 5(2), 677-680. ISSN: 2321-9653

Ojeniyi, S. (2002). Soil management, national resources and environment. Nigeria Journal of Soil Science, 16, 131-135.

Mofunanya, A., Ebigwai, J., Bello, O., & Egbe, A. (2015). Comparative study of the effects of organic and inorganic fertilizer on nutritional composition of Amaranthus spinosus L. Asian Journal of Plant Sciences, 14(1), 34-39. DOI : 10.3923/ajps.2015.34.39

Gupta, V., Lawrence, J., & Germida, J. (1988). Impact of elemental sulfur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. Canadian Journal of Soil Science, 68(3), 463-473.

Shahbandeh, M. (2019). Production volume of palm oil worldwide from 2012/13 to 2019/20.

Carlson, K. M., Heilmayr, R., Gibbs, H. K., Noojipady, P., Burns, D. N., Morton, D. C., Walker, N. F., Paoli, G. D., & Kremen, C. (2018). Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proceedings of the National Academy of Sciences, 115(1), 121-126.

CEIC. (2019). Malaysia: Crude Palm Oil Production. Retrieved September 21 from

Goh, K., Teo, C., Chew, P., & Chiu, S. (1999). Fertiliser management in oil palm–agronomic principles and field practices. Fertilizer Management for Oil Palm Plantations, Sandakan, Malaysia, 20, 21.

Pretty, K., & Sanders, J. (1984). Maximizing the yield of perennial crops through integrated management.

Maene, L., Thong, K., Ong, T., & Mokhtaruddin, A. (1979). Surface wash under mature oil palm. Malaysian Society of Soil Science.

Rashmi, I., Shirale, A., Kartikha, K., Shinogi, K., Meena, B., & Kala, S. (2017). Leaching of Plant Nutrients from Agricultural Lands. In Essential Plant Nutrients (pp. 465-489). Springer.

Luo, J., De Klein, C., Ledgard, S., & Saggar, S. (2010). Management options to reduce nitrous oxide emissions from intensively grazed pastures: a review. Agriculture, ecosystems & environment, 136(3-4), 282-291.

Howarth, R. W., Sharpley, A., & Walker, D. (2002). Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries, 25(4), 656-676.

Žemlička, L., Fodran, P., Kolek, E., & Prónayová, N. (2013). Analysis of natural aroma and flavor of MD2 pineapple variety (Ananas comosus [L.] Merr.). Acta Chimica Slovaca, 6(1), 123-128. DOI: 10.2478/acs-2013-0019

Sanewski, G. M., Bartholomew, D. P., & Paull, R. E. (2018). The pineapple: botany, production and uses. CABI.

Workman, D. (2017). Bananas Exports by Country. Disponible en línea: Disponible en línea: http://www. worldstopexports. com/bananas-exports-country/. Fecha de consulta, 24.

Compilation, T. N. (2016). Pineapple – Common Varieties. International Tropical Fruits Network. Retrieved 18/02/2021 from

Sideris, C., & Young, H. (1945). Effects of potassium on chlorophyll, acidity, ascorbic acid, and carbohydrates of Ananas comosus (L.) Merr. Plant physiology, 20(4), 649. doi: 10.1104/pp.20.4.649

Mohamed, M., Padmanabhan, E., Mei, B., & Siong, W. (2002). The peat soils of Sarawak. STRAPEAT Status Report. Universiti Malaysia Sarawak, Malaysia.

Spironello, A., Quaggio, J. A., Teixeira, L. A. J., Furlani, P. R., & Sigrist, J. M. M. (2004). Pineapple yield and fruit quality effected by NPK fertilization in a tropical soil. Revista brasileira de fruticultura, 26(1), 155-159.

Omotoso, S., & Akinrinde, E. (2013). Effect of nitrogen fertilizer on some growth, yield and fruit quality parameters in pineapple (Ananas comosus L. Merr.) plant at Ado-Ekiti Southwestern, Nigeria. Int. Res. J. Agric. Sci. Soil Sci, 3(1), 11-16. ISSN: 2251-0044

Valleser, V. C. (2019). Phosphorus Nutrition Provoked Improvement on the Growth and Yield of'MD-2'Pineapple. Pertanika Journal of Tropical Agricultural Science, 42(2). ISSN: 1511-3701

Ball, J. (2007). Back to Basics: The Roles of N, P, K and Their Sourced. Ag News and.

Teixeira, L. A. J., Quaggio, J. A., Cantarella, H., & Mellis, E. V. (2011). Potassium fertilization for pineapple: effects on soil chemical properties and plant nutrition. Revista brasileira de fruticultura, 33(2), 627-636.

Kleinhenz, V. (1998). Sulfur and chloride in the soil-plant system. Central Queensland Univ.

Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic press. ISBN: 978-0-12-384905-2

Cunha, G. A. P. d. (2005). Applied aspects of pineapple flowering. Bragantia, 64(4), 499-516.

Turnbull, C., Sinclair, E., Anderson, K., Nissen, R., Shorter, A., & Lanham, T. (1999). Routes of ethephon uptake in pineapple (Ananas comosus) and reasons for failure of flower induction. Journal of plant growth regulation, 18(4), 145-152.

Valleser, V. C. (2018, 2018). Plant Age and Rate of Flower Inducer Affects Flower Initiation of ‘MD2’ Pineapple (Ananas comosus L.). International Journal of Research & Review, 5(4). E-ISSN: 2349-9788

Py, C., Lacoeuilhe, J. J., & Teisson, C. (1987). The pineapple. Cultivation and uses. G.-P. Maisonneuve et Larose. ISBN : 2-7068-0844-6. ISBN 2-7068-0948-5

Biddle, E., Kerfoot, D. G., Kho, Y. H., & Russell, K. E. (1976). Kinetic studies of the thermal decomposition of 2-chloroethylphosphonic acid in aqueous solution. Plant physiology, 58(5), 700-702.

Roy, A., Sen, S., & Bose, T. (1980). Effect of alfa-naphthylacetic acid and Ethrel on fruit growth and quality of Kew pineapple. Bangladesh Horticulture, 8(2), 13-20. ISSN:0379-4288




How to Cite

Hawa, S. M. ., Anak Panjang, H. G. ., Nyagang, E. ., Yeo, W. S., Saptoro, A. ., Lau, S. W. L., Jong, T. K. ., & Jong, A. C. T. (2021). Management for Paddy, Oil Palm, and Pineapple Plantations in Malaysia: Current Status and Reviews. Journal of Applied Science &Amp; Process Engineering, 8(2), 859–880.