CFD Analysis of Phase Holdup Behaviour in a Gas-Liquid Bubble Column

  • Nur Khairunnisa Abd Halim Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Siti Aslina Hussain Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0001-8475-9791
  • Mus’ab Abd. Razak Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Mohd Amirul Syafiq Mohd Yunos Plant Assessment Technology, Industrial Technology Division, Malaysian Nuclear Agency, Bangi 43000 Kajang, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0002-0003-3350
Keywords: Bubble column, CFD simulation, Gas holdup, Multiphase flow, Eulerian-Eulerian model

Abstract

Experimental works on bubble column hydrodynamic are normally carried out on a laboratory scale less than 0.3 m with holes number less than 10. In this paper, we discuss several approaches to bubble column scale-up, relying on variables of parameters. Two spargers with different hole diameters (0.5 mm and 1.25 mm) and superficial gas velocities (0.0125 m/s and 0.0501 m/s) are used to determine the distribution of gas holdup and liquid flow pattern. An Insignificant level of bed heights is investigated for the efficiency of hydrodynamic performance. Computational Fluid Dynamic (CFD) is used as the realistic representation of the actual reactor. The flow of the gas-liquid interface is implemented using the VOF model using the finite volume method by tracking the volume fraction of each of the fluids throughout the domain. It is observed that the initial bed heights, superficial gas velocity, and hole diameter of the sparger influence the overall gas holdup. Although the difference in sparger hole diameter affects overall gas holdup, the results are weak relative to other operating conditions. The simulation work is then compared with experimental data to improve the accuracy in analyzing the hydrodynamics of multiphase system, as well as validated the multidimensional models.

References

Buwa, V. V., & Ranade, V. V. (2002). Dynamics of gas-liquid flow in a rectangular bubble column: Experiments and single/multi-group CFD simulations. Chemical Engineering Science, 57(22-23), 4715-4736.

https://doi.org/10.1016/S0009-2509(02)00274-9

Kantarci, N., Borak, F., & Ulgen, K. O. (2005). Bubble column reactors. Process Biochemistry, 40(7), 2263-2283.

https://doi.org/10.1016/j.procbio.2004.10.004

Saleh, S. N., Mohammed, A. A., Al-Jubory, F. K., & Barghi, S. (2018). CFD assesment of uniform bubbly flow in a bubble column. Journal of Petroleum Science and Engineering, 161, 96-107.

https://doi.org/10.1016/j.petrol.2017.11.002

Li, G., Yang, X., & Dai, G. (2009). CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column. Chemical Engineering Science, 64(24), 5104-5116.

https://doi.org/10.1016/j.ces.2009.08.016

Simonnet, M., Gentric, C., Olmos, E., & Midoux, N. (2008). CFD simulation of the flow field in a bubble column reactor: Importance of the drag force formulation to describe regime transitions. Chemical Engineering and Processing: Process Intensification, 47(9-10), 1726-1737.

https://doi.org/10.1016/j.cep.2007.08.015

Pourtousi, M., Ganesan, P., Sandaran, S. C., & Sahu, J. N. (2016). Effect of ring sparger diameters on hydrodynamics in bubble column : A numerical investigation, 0, 1-11.

https://doi.org/10.1016/j.jtice.2016.10.006

Şal, S., Gül, Ö. F., & Özdemir, M. (2013). The effect of sparger geometry on gas holdup and regime transition points in a bubble column equipped with perforated plate spargers. Chemical Engineering and Processing: Process Intensification, 70, 259-266.

https://doi.org/10.1016/j.cep.2013.03.012

Shah, Y. T., Kelkar, B. G., Godbole, S. P., & Deckwer, W. ‐D. (1982). Design parameters estimations for bubble column reactors. AIChE Journal, 28(3), 353-379.

https://doi.org/10.1002/aic.690280302

McClure, D. D., Wang, C., Kavanagh, J. M., Fletcher, D. F., & Barton, G. W. (2016). Experimental investigation into the impact of sparger design on bubble columns at high superficial velocities. Chemical Engineering Research and Design, 106, 205-213.

https://doi.org/10.1016/j.cherd.2015.12.027

Krishna, R., & van Baten, J. M. (2001). Scaling up Bubble Column Reactors with the Aid of CFD. Chemical Engineering Research and Design, 79(April), 283-309.

https://doi.org/10.1205/026387601750281815

Yamashita, F., & Suzuki, T. (2007). Simulation and measurement of gas holdup in bubble columns, (September), 16-20

Ihsana, Y., Winardi, S. and Nurtono, T. (2020). Study Of Hydrodynamics And Overall Gas Hold Up Validation In Bubble Column. IPTEK The Journal of Technology and Science, 31(1), 44-53.

https://doi.org/10.12962/j20882033.v31i1.5636

McClure, D. D., Aboudha, N., Kavanagh, J. M., Fletcher, D. F., & Barton, G. W. (2015). Mixing in bubble column reactors: Experimental study and CFD modeling. Chemical Engineering Journal, 264, 291-301.

https://doi.org/10.1016/j.cej.2014.11.090

Fletcher, D. F., McClure, D. D., Kavanagh, J. M., & Barton, G. W. (2017). CFD simulation of industrial bubble columns: Numerical challenges and model validation successes. Applied Mathematical Modelling, 44, 25-42.

https://doi.org/10.1016/j.apm.2016.08.033

Ekambara, K., Dhotre, M. T., & Joshi, J. B. (2005). CFD simulations of bubble column reactors: 1D, 2D and 3D approach. Chemical Engineering Science, 60(23), 6733-6746.

https://doi.org/10.1016/j.ces.2005.05.047

Hansen, R. (2009). Computational and experimental study of bubble size in bubble columns. Esbjerg Institute of Technology, Aalborg University.

Ziegenhein, T., Lucas, D., Rzehak, R., & Krepper, E. (2013). Closure relations for CFD simulation of bubble columns, 1-12

Tabib, M. V., Roy, S. A., & Joshi, J. B. (2008). CFD simulation of bubble column-An analysis of interphase forces and turbulence models. Chemical Engineering Journal, 139(3), 589-614.

https://doi.org/10.1016/j.cej.2007.09.015

Rzehak, R., Krauß, M., Kováts, P., & Zähringer, K. (2017). Fluid dynamics in a bubble column: New experiments and simulations. International Journal of Multiphase Flow, 89, 299-312.

https://doi.org/10.1016/j.ijmultiphaseflow.2016.09.024

Mohd Amirul Syafiq Mohd Yunos, S. A. H., Yusoff, H. M., & Sipaun, S. (2017). Design and Fabrication of Quadrilateral Bubble Column Test Rig for Multiphase Flow Investigations Design and Fabrication of Quadrilateral Bubble Column Test Rig for Multiphase Flow Investigations, (April). https://doi.org/10.21276/sjet.2017.5.2.1

Pourtousi, M., Zeinali, M., Ganesan, P., & Sahu, J. N. (2015). Prediction of multiphase flow pattern inside a 3D bubble column reactor using a combination of CFD and ANFIS. RSC Advances, 5(104), 85652-85627.

https://doi.org/10.1039/C5RA11583C

Tao, F., Ning, S., Zhang, B., & He, H. J. G. (2019). Simulation Study on Gas Holdup of Large and Small Bubbles in a High Pressure Gas - Liquid. Processes, 7(9)

https://doi.org/10.3390/pr7090594

Wagh, S. M., Ansari, M. E. A., & Kene, P. T. (2014). Axial and Radial Gas Holdup in Bubble Column Reactor, 35(6), 1703-1705.

https://doi.org/10.5012/bkcs.2014.35.6.1703

Khan, K. I. (2014). Fluid Dynamic Modelling of Bubble Column Reactor. PhD Thesis, (March). https://doi.org/10.6092/polito/porto/2528494

Rampure, M. R., Mahajani, S. M., & Ranade, V. V. (2009). CFD Simulation of Bubble Columns: Modeling of Nonuniform Gas Distribution at Sparger. Industrial & Engineering Chemistry Research, 48(17), 8186-8192.

https://doi.org/10.1021/ie8018593

Published
2021-04-30
How to Cite
Abd Halim, N. K., Siti Aslina Hussain, Mus’ab Abd. Razak, & Mohd Amirul Syafiq Mohd Yunos. (2021). CFD Analysis of Phase Holdup Behaviour in a Gas-Liquid Bubble Column. Journal of Applied Science & Process Engineering, 8(1), 738-749. https://doi.org/10.33736/jaspe.3180.2021