A Review Based on Low- and High-Stream Global Carbon Capture and Storage (CCS) Technology and Implementation Strategy

Authors

  • Abu Saleh Ahmed Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
  • Md. Rezaur Rahman Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia. https://orcid.org/0000-0002-7151-0687
  • Muhammad Khusairy Bin Bakri Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.

DOI:

https://doi.org/10.33736/jaspe.3157.2021

Keywords:

Carbon; Capture; Storage; Technology; Analysis

Abstract

Carbon capture and storage (CCS) is a method used to capture CO2 that is produced via the combustion of fossil fuels and then store it away from the atmosphere for a long time. The focus of CCS is on power generation and industrial sectors, mainly because they emit such a large volume of carbon dioxide that the capture and storage there will be the most beneficial. The most researched/developed ways to capture CO2 are pre-combustion capture, post-combustion capture, and oxyfuel combustion capture. Once the carbon dioxide is captured, it can either be stored underground or stored in the ocean. Source of CO2 seriously affecting our planet. The major factor in increased global warming comes from carbon dioxide emission. Coal fire power plants, cement/brick factories, oil refineries, natural gas wells, and transportation all emit CO2 from the burning of fossil fuels.  Many countries are planning to set mandatory caps on CO2 emissions, causing companies to develop and test methods to mitigate their carbon footprint. This study focuses on the processes and techniques of CCS technology as well as challenges and policy concerns.

References

Boot-Hardford, M.E., Abanades, J.C., Anthony, E.J., Blunt, M.J., Brandani, S., Dowell, N.M., Fernandez, J.R., Ferrari, M.-C., Gross, R., Hallett, J.P., Haszeldine, R.S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R.T.J., Pourkashanian, M., Rochelle, G.T., Shah, N., Yao, J.G., Fennell, P.S. (2014) Carbon Capture and storage update. Energy & Environmental Science 7(1), 130-189.

https://doi.org/10.1039/C3EE42350F

Offshore Engineers (2020) JOGMEC, JX, Petronas Testing CCS at Malaysian Gas Fields. Viewed on 17/11/2020. https://www.oedigital.com/news/476970-jogmec-jx-petronas-testing-ccs-at-malaysian-gas-fields

Anderson, S., Newell, R. (2004) Prospects for carbon capture and storage technologies. Annual Review of Environment and Resources 29(1), 109-142.

https://doi.org/10.1146/annurev.energy.29.082703.145619

Das, S., Kumar, J. (2012). Carbon capture and storage. International Journal of Scientific & Engineering Research (7)10, 1385-1289.

https://doi.org/10.14299/ijser.2016.10.006

Abdallah, L., & El-Shennawy, T. (2013). Reducing carbon dioxide emissions from electricity sector using smart electric grid applications. Journal of Engineering, 2013(845051), 1-9.

https://doi.org/10.1155/2013/845051

Smit, B., Park, A.-H.A., Gadikota, G. (2014) The grand challenges in carbon capture, utilization, and storage. Frontier of Energy Research 2(55), 1-3.

https://doi.org/10.3389/fenrg.2014.00055

Solomon S. (2007) Carbon dioxide storage: Geological security and environmental issues-Case study on the Sleipner Gas Field in Norway. Bellona Report, 1-126.

Philbin, S.P., Wang, S.H.-M. (2019) Perspectives on the techno- economic analysis of carbon capture and storage. Journal of Technology Management and Innovation, 14(3), 3-17.

https://doi.org/10.4067/S0718-27242019000300003

Herzog, H. (2015). Carbon Dioxide Capture and Storage. In: Helm, D., Hepburn, C. The Economics and politics of climate change, Oxford Scholarship Online, 263-283.

https://doi.org/10.1093/acprof:osobl/9780199573288.003.0013

Sahimaa, O., Mattinen, M. K., Koskela, S., Salo, M., Sorvari, J., Myllymaa, T., Seppälä, J. (2017). Towards zero climate emissions, zero waste, and one planet living - Testing the applicability of three indicators in Finnish cities. Sustainable Production and Consumption.

https://doi.org/10.1016/j.spc.2017.02.004

Sreedhar, I., Nahar, T., Venugopal, A., & Srinivas, B. (2017). Carbon capture by absorption-Path covered and ahead. Renewable and sustainable energy reviews, 76, 1080-1107.

https://doi.org/10.1016/j.rser.2017.03.109

Bhown, A. S., & Freeman, B. C. (2011). Analysis and status of post-combustion carbon dioxide capture technologies. Environmental science & technology, 45(20), 8624-8632.

https://doi.org/10.1021/es104291d

CQ Press. (2020). National Oceanic and Atmospheric Administration. In Federal Regulatory Guide.

https://doi.org/10.4135/9781544377230.n58

Knudsen, J. N., Jensen, J. N., Vilhelmsen, P. J., & Biede, O. (2009). Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia, 1(1), 783-790.

https://doi.org/10.1016/j.egypro.2009.01.104

Takamura, Y., Aoki, J., Uchida, S., & Narita, S. (2001). Application of high‐pressure swing adsorption process for improvement of CO2 recovery system from flue gas. The Canadian Journal of Chemical Engineering, 79(5), 812-816.

https://doi.org/10.1002/cjce.5450790517

Azar, C., Lindgren, K., Larson, E., & Möllersten, K. (2006). Carbon capture and storage from fossil fuels and biomass-costs and potential role in stabilizing the atmosphere.Climatic change, 74(1), 47-79.

https://doi.org/10.1007/s10584-005-3484-7

Adánez, J., de Diego, L. F., García-Labiano, F., Gayán, P., Abad, A., & Palacios, J. M. (2004). Selection of oxygen carriers for chemical-looping combustion. Energy & Fuels, 18(2), 371-377.

https://doi.org/10.1021/ef0301452

Li, F., Luo, S., Sun, Z., Bao, X., & Fan, L. S. (2011). Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations. Energy & environmental science, 4(9), 3661-3667.

https://doi.org/10.1039/c1ee01325d

Lyngfelt, A. (2015). Oxygen carriers for chemical-looping combustion. In Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture, 221-254. Woodhead Publishing.

https://doi.org/10.1016/B978-0-85709-243-4.00011-2

Erlach, B., Schmidt, M., & Tsatsaronis, G. (2011). Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion. .Energy, 36(6), 3804-3815.

https://doi.org/10.1016/j.energy.2010.08.038

Riahi, K., Rubin, E. S., Taylor, M. R., Schrattenholzer, L., & Hounshell, D. (2004). Technological learning for carbon capture and sequestration technologies. Energy economics, 26(4), 539-564.

https://doi.org/10.1016/j.eneco.2004.04.024

Yave, W., Car, A., Funari, S. S., Nunes, S. P., & Peinemann, K. V. (2010). CO2-philic polymer membrane with extremely high separation performance. Macromolecules, 43(1), 326-333.

https://doi.org/10.1021/ma901950u

Brunetti, A., Scura, F., Barbieri, G., & Drioli, E. (2010). Membrane technologies for CO2 separation. Journal of Membrane Science, 359(1-2), 115-125..

https://doi.org/10.1016/j.memsci.2009.11.040

Bernardo, P., Drioli, E., & Golemme, G. (2009). Membrane gas separation: a review/state of the art. Industrial & engineering chemistry research, 48(10), 4638-4663.

https://doi.org/10.1021/ie8019032

Nohra, M., Woo, T. K., Alavi, S., & Ripmeester, J. A. (2012). Molecular dynamics Gibbs free energy calculations for CO2 capture and storage in structure I clathrate hydrates in the presence of SO2, CH4, N2, and H2S impurities. The Journal of Chemical Thermodynamics, 44(1), 5-12.

https://doi.org/10.1016/j.jct.2011.08.025

Tuinier, M. J., van Sint Annaland, M., Kramer, G. J., & Kuipers, J. A. M. (2010). Cryogenic CO2 capture using dynamically operated packed beds. Chemical Engineering Science, 65(1), 114-119.

https://doi.org/10.1016/j.ces.2009.01.055

Hoeger, C., Bence, C., Burt, S. S., Baxter, A., & Baxter, L. (2010). Cryogenic CO2 capture for improved efficiency at reduced cost. AIChE Annual Meeting, Conference Proceedings.

Göttlicher, G., & Pruschek, R. (1997). Comparison of CO2 removal systems for fossil-fuelled power plant processes. Energy Conversion and Management, 38, S173-S178.

https://doi.org/10.1016/S0196-8904(96)00265-8

Leung, D. Y., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443..

https://doi.org/10.1016/j.rser.2014.07.093

Zhang, Y., Lu, X., & Ji, X. (2019). Carbon Dioxide Capture. Deep Eutectic Solvents: Synthesis, Properties, and Applications, 297-319.

https://doi.org/10.1002/9783527818488.ch15

Pires, J. C. M., Martins, F. G., Alvim-Ferraz, M. C. M., & Simões, M. (2011). Recent developments on carbon capture and storage: an overview. Chemical engineering research and design, 89(9), 1446-1460.

https://doi.org/10.1016/j.cherd.2011.01.028

Shackley, S., Reiner, D., Upham, P., de Coninck, H., Sigurthorsson, G., & Anderson, J. (2009). The acceptability of CO2 capture and storage (CCS) in Europe: An assessment of the key determining factors: Part 2. The social acceptability of CCS and the wider impacts and repercussions of its implementation. International Journal of Greenhouse Gas Control, 3(3), 344-356.

https://doi.org/10.1016/j.ijggc.2008.09.004

Minchener, A. J. (2014). Gasification based CCS challenges and opportunities for China. Fuel, 116, 904-909.

https://doi.org/10.1016/j.fuel.2013.02.046

Van Alphen, K., tot Voorst, Q. V. V., Hekkert, M. P., & Smits, R. E. (2007). Societal acceptance of carbon capture and storage technologies. Energy Policy, 35(8), 4368-4380.

https://doi.org/10.1016/j.enpol.2007.03.006

Araújo, O. de Q. F., & de Medeiros, J. L. (2017). Carbon capture and storage technologies: present scenario and drivers of innovation. Current Opinion in Chemical Engineering, 17, 22-34.

https://doi.org/10.1016/j.coche.2017.05.004

Downloads

Published

2021-04-30

How to Cite

Ahmed, A. S., Rahman, M. R., & Bin Bakri, M. K. (2021). A Review Based on Low- and High-Stream Global Carbon Capture and Storage (CCS) Technology and Implementation Strategy. Journal of Applied Science &Amp; Process Engineering, 8(1), 722–737. https://doi.org/10.33736/jaspe.3157.2021