Prevalence and Absolute Quantification of NDM-1: a β-Lactam Resistance Gene in Water Compartment of Lakes Surrounding Hyderabad, India

  • Rajeev Ranjan Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
  • Shashidhar Thatikonda Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
Keywords: Antibiotic Resistance, NDM-1, Lake Water, qPCR, Hierarchical Clustering

Abstract

NDM-1(New Delhi Metallo-beta-lactamase-1) is considered an emerging environmental contaminant, which causes severe hazards for public health. The abuse of antimicrobials for public health and veterinary use could favor the proliferation of resistance in bacteria. In this study, screening and absolute quantification of the NDM-1 in 17 water samples collected from a different sampling location surrounding Hyderabad, India performed using a real-time quantitative polymerase chain reaction (qPCR). Absolute quantification achieved by running the isolated DNA (Deoxy-ribonucleic acid) samples from different water bodies in triplicate with the known standards of the NDM-1 and results reported as gene copy number/ng(nanogram) of template DNA. All collected samples had shown a positive signal for the NDM-1 during qPCR analysis. Among the tested samples, the highest gene copy number/ng of template DNA was observed in the Mir Alam tank (985.74)Further, based on pollution sources and observed data, a hierarchical clustering analysis was performed to categorize the different sampling locations and results presented in the form of a dendrogram.

Author Biography

Shashidhar Thatikonda, Department of Civil Engineering, Indian Institute of Technology Hyderabad, India

Professor, Department of Civil Engineering, Indian Institute of Technology Hyderabad, India

References

Vikesland, P. J., Pruden, A., Alvarez, P. J., Aga, D., Bürgmann, H., Li, X. D. & Zhu, Y. G. (2017). Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environ Sci Technol., 51(22):13061-13069. doi: 10.1021/acs.est.7b03623.

https://doi.org/10.1021/acs.est.7b03623

Totsika, M. (2016). Benefits and challenges of antivirulence antimicrobials at the dawn of the post-antibiotic era. Drug Delivery Letters, 6(1), 30-37. doi:10.2174/2210303106666160506120057

https://doi.org/10.2174/2210303106666160506120057

Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: a global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857-2876. doi: 10.1080/10408398.2015.1077192.

https://doi.org/10.1080/10408398.2015.1077192

Streit, W. R., & Daniel, R. (2017). Metagenomics. Springer New York.

https://doi.org/10.1007/978-1-4939-6691-2

Wilke, M. H. (2010). Multi-resistant bacteria and current therapy-the economical side of the story. European Journal of Medical Research, 15(12), 571. doi: 10.1186/2047-783X-15-12-571.

https://doi.org/10.1186/2047-783X-15-12-571

Garner, E. D. (2018). Occurrence and Control of Microbial Contaminants of Emerging Concern through the Urban Water Cycle: Molecular Profiling of Opportunistic Pathogens and Antibiotic Resistance (Doctoral dissertation, Virginia Tech). URL: http://hdl.handle.net/10919/93743

Picao, RC, Cardoso, JP, Campana, EH, Nicoletti AG, Petrolini, FVB, Assis, DM, Juliano, L., Gales, AC. (2013). The route of antimicrobial resistance from the hospital effluent to the environment: focus on the occurrence of KPC-producing Aeromonas spp. and Enterobacteriaceae in sewage. Diagn Microbiol Infect Dis 76(1):80-85. doi: 10.1016/j.diagmicrobio.2013.02.001.

https://doi.org/10.1016/j.diagmicrobio.2013.02.001

Blaak A, Lynch G, Italiaander R, Hamidjaja RA, Schets FM, de Roda Husman AM (2015). Multidrug-resistant and extended spectrum beta-lactamase producing escherichia coli in dutch surface water and wastewater. PLoS One 10:6-15. doi: 10.1371/journal.pone.0127752.

https://doi.org/10.1371/journal.pone.0127752

Adegoke AA, Stentor TA, Okoh AI (2017). Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol 8:2276. doi: 10.3389/fmicb.2017.02276.

https://doi.org/10.3389/fmicb.2017.02276

Li, L. G., Xia, Y., & Zhang, T. (2017). Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. The ISME Journal, 11(3), 651-662. doi: 10.1038/ismej.2016.155.

https://doi.org/10.1038/ismej.2016.155

Tehrani, A. H., & Gilbride, K. A. (2018). A closer look at the antibiotic‐resistant bacterial community found in urban wastewater treatment systems. Microbiology Open, 7(4), e00589. doi: 10.1002/mbo3.589.

https://doi.org/10.1002/mbo3.589

Holmes, A. H., Moore, L. S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Gurein, PJ., Piddock, LJV. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet Infectious Diseases, 387(10014), 176-187. doi: 10.1016/S0140-6736(15)00473-0.

https://doi.org/10.1016/S0140-6736(15)00473-0

Marathe, N. P., Pal, C., Gaikwad, S. S., Jonsson, V., Kristiansson, E., Larsson, DGJ. (2017). Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Research, 124, 388-397. doi: 10.1016/j.watres.2017.07.060.

https://doi.org/10.1016/j.watres.2017.07.060

Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597-602. doi: 10.1016/S1473-3099(10)70143-2.

https://doi.org/10.1016/S1473-3099(10)70143-2

Lübbert, C., Baars, C., Dayakar, A., Lippmann, N., Rodloff, A. C., Kinzig, M., & Sörgel, F. (2017). Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection, 45(4), 479-491. doi: 10.1007/s15010-017-1007-2.

https://doi.org/10.1007/s15010-017-1007-2

Fick J, Söderström H, Lindberg RH, Phan, C., Tysklind, M., Larsson, DGJ. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem., 28(12):2522-7. doi: 10.1897/09-073.1.

https://doi.org/10.1897/09-073.1

Rutgersson C, Fick J, Marathe N, Kristiansson, E., Janzon, A., Angelin, M., Johansson, A., Shouche, Y., Flach, C-F., Larsson, DGJ. (2014). Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. Environ Sci Technol., 48 (14):7825-32. doi: 10.1021/es501452a.

https://doi.org/10.1021/es501452a

Walsh, T R., Weeks, J., Livermore, D. M., Toleman, M. A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. The Lancet Infectious Diseases, 11(5), 355-362. doi: 10.1016/S1473-3099(11)70059-7.

https://doi.org/10.1016/S1473-3099(11)70059-7

Rathinasabapathi, P, Hiremath, DS, Arunraj, R and Parani, M. (2015). Molecular Detection of New Delhi Metallo-Beta-Lactamase-1 (NDM-1) Positive Bacteria from Environmental and Drinking Water Samples by Loop Mediated Isothermal Amplification of blaNDM-1. Indian J Microbiol, 55(4): 400-405. doi: 10.1007/s12088-015-0540-x.

https://doi.org/10.1007/s12088-015-0540-x

Struelens MJ, Monnet DL, Magiorakos AP, Santos O'Connor F, Giesecke J., European NDM-1 Survey Participants. (2010). The New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill 15(46):19716. doi: 10.2807/ese.15.46.19716-en.

https://doi.org/10.2807/ese.15.46.19716-en

Kumarasamy KK, Toleman MA, Walsh TR, et al. (2010). The emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 10: 597-602. doi:10.1016/S1473-3099(10)70143-2.

https://doi.org/10.1016/S1473-3099(10)70143-2

Deshpande P, Rodrigues C, Shetty A, Kapadia F, Hedge A, Soman R. (2010). New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae: treatment options with carbapenems compromised. J Assoc Physicians India. 58: 147-49. PMID: 20848811

Livermore DM, Walsh TR, Toleman M, Woodford N. (2010). BalkanNDM-1: escape or transplant? Lancet Infect Dis. 11: 164. doi:10.1016/S1473-3099(10)70202-X.

https://doi.org/10.1016/S1473-3099(11)70048-2

Jamwal P, Mittal AK, Mouchel JM. (2009). Efficiency evaluation of sewage treatment plants with different technologies in Delhi (India). Environ Monit Assess. 153: 293-305. doi: 10.1007/s10661-008-0356-9.

https://doi.org/10.1007/s10661-008-0356-9

Chen Y, Su J-Q., Zhang J., Chen, H., Zhang, B., Gin KY., He, Y. (2019). High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. Water Research 149, 179-189. doi: 10.1016/j.watres.2018.11.007

https://doi.org/10.1016/j.watres.2018.11.007

Eramo, A.; Medina, W. R. M.; Fahrenfeld, N. L. (2020). Factors associated with elevated levels of antibiotic resistance genes in sewer sediments and wastewater. Environ. Sci.: Water Res. Technol., 6, 1697-1710. doi: 10.1039/D0EW00230E

https://doi.org/10.1039/D0EW00230E

Bora A, Ahmed GU, Hazarika NK, Prasad KN, Shukla SK, Randhawa V., Sarma, JB. (2013). Incidence of blaNDM-1 gene in Escherichia coli isolates at a tertiary care referral hospital in Northeast India. Indian Journal of Medical Microbiology, 31(3): 250-256. doi:10.4103/0255-0857.115628

https://doi.org/10.4103/0255-0857.115628

Deshpande P, Rodrigues C, Shetty A, Kapadia F, Hedge A, Soman R. (2010). New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae: Treatment options with carbapenems compromised. J Assoc Physicians India, 58:147-9. PMID: 20848811.

Jamal WY, Albert MJ, Rotimi VO (2016). High Prevalence of New Delhi Metallo-βLactamase-1 (NDM-1) Producers among Carbapenem-Resistant Enterobacteriaceae in Kuwait. PloS one, 31:11(3): e0152638. doi: 10.1371/journal.pone.0152638.

https://doi.org/10.1371/journal.pone.0152638

Katouli M, Thompson JM, Gundogdu A, Stratton H.M. (2012). Antibiotic Resistant Bacteria in Hospital Wastewaters and Sewage Treatment Plants. In: Science Forum and Stakeholder Engagement: Building Linkages, Collaboration and Science Quality, 225-229.

Alam MZ, Aqil F, Ahmad I, Ahmad S. (2013). Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater. Braz J Microbiol., 44(3):799-806. doi: 10.1590/s1517-83822013000300021.

https://doi.org/10.1590/S1517-83822013000300021

Devarajan N, Laffite A, Mulaji CK, Otamonga JP, Mpiana PT, Mubedi JL, Prabakar K, Ibelings BW, Pote J. (2016). Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters. PloS one., 11(2): e0149211. doi:10.1371/journal.pone.0149211.

https://doi.org/10.1371/journal.pone.0149211

D'costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C., Froese, D., Zazula, G., Calmels, F., Debryune, R., Golding, GB., Poinar, HN., Wright, GD. (2011). Antibiotic resistance is ancient. Nature, 477 (7365):457-461. doi: 10.1038/nature10388.

https://doi.org/10.1038/nature10388

Gayathri D, Eramma NK, Devaraja TN. (2012). New Delhi metallo beta- Lactamase1: Incidence and threats. Int J Biol Med Res., 3(2): 1870-1874. ISSN: 0976:6685

Carattoli A, Villa L, Poirel L, Bonnin RA, Nordmann P. (2012). Evolution of IncA/C bla CMY-2-carrying plasmids by acquisition of the blaNDM-1 carbapenemase gene. Antimicrob Agents Chemother., 56 (2):783-786. doi: 10.1128/AAC.05116-11.

https://doi.org/10.1128/AAC.05116-11

Rafei R, Dabboussi F, Hamze M, Eveillard M, Lemarie C, Mallat H., Rolain J-M., Joly-Guillou, M-L., Kempf, M. (2014). First report of blaNDM-1-producing Acinetobacter baumannii isolated in Lebanon from civilians wounded during the Syrian war. Int J Infect Dis., 21:21- 23. doi: 10.1016/j.ijid.2014.01.004.

https://doi.org/10.1016/j.ijid.2014.01.004

Liu C, Qin S, Xu H, Xu L, Zhao D, Liu X., Lang, S., Feng, X., Liu, H-M. (2015). New Delhi Metallo-β-Lactamase 1(NDM-1), the Dominant Carbapenemase Detected in Carbapenem-Resistant Enterobacter cloacae from Henan Province, China. PloS one., 10(8): e0135044. doi: 10.1371/journal.pone.0135044

https://doi.org/10.1371/journal.pone.0135044

Zhang, C., Qiu, S., Wang, Y., Qi, L., Hao, R., Liu, X., ... & Song, H. (2013). Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PloS one, 8(6), e64857. doi: 10.1371/journal.pone.0064857

https://doi.org/10.1371/journal.pone.0064857

Chandran SP, Diwan V, Tamhankar AJ, Joseph BV, Rosales-Klintz S, Mundayoor S, Lundborg CS, Macaden R. (2014). Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: a matter of concern. J Appl Microbiol.,117(4):984-995. doi: 10.1111/jam.12591.

https://doi.org/10.1111/jam.12591

Isozumi, R., Yoshimatsu, K., Yamashiro, T., Hasebe, F., Nguyen, BM., Ngo, TC., Yasuda, SP., Koma, T., Shimuzu, K., Arikawa, J. (2012). bla(NDM-1)-positive Klebsiella pneumoniae from environment, Vietnam. Emerges Infect Dis., 18(8):1383-1385. doi: 10.3201/eid1808.111816.

https://doi.org/10.3201/eid1808.111816

Foxman B. (2014). Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am., 28 (1): 1-13. doi: 10.1016/j.idc.2013.09.003.

https://doi.org/10.1016/j.idc.2013.09.003

Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K., Walsh, TR. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-1 and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother., 53 (12):5046-5054. doi: 10.1128/AAC.00774-09.

https://doi.org/10.1128/AAC.00774-09

Published
2021-04-30
How to Cite
Ranjan, R., & Thatikonda, S. (2021). Prevalence and Absolute Quantification of NDM-1: a β-Lactam Resistance Gene in Water Compartment of Lakes Surrounding Hyderabad, India. Journal of Applied Science & Process Engineering, 8(1), 700-711. https://doi.org/10.33736/jaspe.3104.2021