Prevalence and Absolute Quantification of NDM-1: a β-Lactam Resistance Gene in Water Compartment of Lakes Surrounding Hyderabad, India
DOI:
https://doi.org/10.33736/jaspe.3104.2021Keywords:
Antibiotic Resistance, NDM-1, Lake Water, qPCR, Hierarchical ClusteringAbstract
NDM-1(New Delhi Metallo-beta-lactamase-1) is considered an emerging environmental contaminant, which causes severe hazards for public health. The abuse of antimicrobials for public health and veterinary use could favor the proliferation of resistance in bacteria. In this study, screening and absolute quantification of the NDM-1 in 17 water samples collected from a different sampling location surrounding Hyderabad, India performed using a real-time quantitative polymerase chain reaction (qPCR). Absolute quantification achieved by running the isolated DNA (Deoxy-ribonucleic acid) samples from different water bodies in triplicate with the known standards of the NDM-1 and results reported as gene copy number/ng(nanogram) of template DNA. All collected samples had shown a positive signal for the NDM-1 during qPCR analysis. Among the tested samples, the highest gene copy number/ng of template DNA was observed in the Mir Alam tank (985.74). Further, based on pollution sources and observed data, a hierarchical clustering analysis was performed to categorize the different sampling locations and results presented in the form of a dendrogram.
References
Vikesland, P. J., Pruden, A., Alvarez, P. J., Aga, D., Bürgmann, H., Li, X. D. & Zhu, Y. G. (2017). Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance. Environ Sci Technol., 51(22):13061-13069. doi: 10.1021/acs.est.7b03623.
https://doi.org/10.1021/acs.est.7b03623
Totsika, M. (2016). Benefits and challenges of antivirulence antimicrobials at the dawn of the post-antibiotic era. Drug Delivery Letters, 6(1), 30-37. doi:10.2174/2210303106666160506120057
https://doi.org/10.2174/2210303106666160506120057
Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: a global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857-2876. doi: 10.1080/10408398.2015.1077192.
https://doi.org/10.1080/10408398.2015.1077192
Streit, W. R., & Daniel, R. (2017). Metagenomics. Springer New York.
https://doi.org/10.1007/978-1-4939-6691-2
Wilke, M. H. (2010). Multi-resistant bacteria and current therapy-the economical side of the story. European Journal of Medical Research, 15(12), 571. doi: 10.1186/2047-783X-15-12-571.
https://doi.org/10.1186/2047-783X-15-12-571
Garner, E. D. (2018). Occurrence and Control of Microbial Contaminants of Emerging Concern through the Urban Water Cycle: Molecular Profiling of Opportunistic Pathogens and Antibiotic Resistance (Doctoral dissertation, Virginia Tech). URL: http://hdl.handle.net/10919/93743
Picao, RC, Cardoso, JP, Campana, EH, Nicoletti AG, Petrolini, FVB, Assis, DM, Juliano, L., Gales, AC. (2013). The route of antimicrobial resistance from the hospital effluent to the environment: focus on the occurrence of KPC-producing Aeromonas spp. and Enterobacteriaceae in sewage. Diagn Microbiol Infect Dis 76(1):80-85. doi: 10.1016/j.diagmicrobio.2013.02.001.
https://doi.org/10.1016/j.diagmicrobio.2013.02.001
Blaak A, Lynch G, Italiaander R, Hamidjaja RA, Schets FM, de Roda Husman AM (2015). Multidrug-resistant and extended spectrum beta-lactamase producing escherichia coli in dutch surface water and wastewater. PLoS One 10:6-15. doi: 10.1371/journal.pone.0127752.
https://doi.org/10.1371/journal.pone.0127752
Adegoke AA, Stentor TA, Okoh AI (2017). Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front Microbiol 8:2276. doi: 10.3389/fmicb.2017.02276.
https://doi.org/10.3389/fmicb.2017.02276
Li, L. G., Xia, Y., & Zhang, T. (2017). Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. The ISME Journal, 11(3), 651-662. doi: 10.1038/ismej.2016.155.
https://doi.org/10.1038/ismej.2016.155
Tehrani, A. H., & Gilbride, K. A. (2018). A closer look at the antibiotic‐resistant bacterial community found in urban wastewater treatment systems. Microbiology Open, 7(4), e00589. doi: 10.1002/mbo3.589.
https://doi.org/10.1002/mbo3.589
Holmes, A. H., Moore, L. S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Gurein, PJ., Piddock, LJV. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet Infectious Diseases, 387(10014), 176-187. doi: 10.1016/S0140-6736(15)00473-0.
https://doi.org/10.1016/S0140-6736(15)00473-0
Marathe, N. P., Pal, C., Gaikwad, S. S., Jonsson, V., Kristiansson, E., Larsson, DGJ. (2017). Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Research, 124, 388-397. doi: 10.1016/j.watres.2017.07.060.
https://doi.org/10.1016/j.watres.2017.07.060
Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597-602. doi: 10.1016/S1473-3099(10)70143-2.
https://doi.org/10.1016/S1473-3099(10)70143-2
Lübbert, C., Baars, C., Dayakar, A., Lippmann, N., Rodloff, A. C., Kinzig, M., & Sörgel, F. (2017). Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection, 45(4), 479-491. doi: 10.1007/s15010-017-1007-2.
https://doi.org/10.1007/s15010-017-1007-2
Fick J, Söderström H, Lindberg RH, Phan, C., Tysklind, M., Larsson, DGJ. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem., 28(12):2522-7. doi: 10.1897/09-073.1.
https://doi.org/10.1897/09-073.1
Rutgersson C, Fick J, Marathe N, Kristiansson, E., Janzon, A., Angelin, M., Johansson, A., Shouche, Y., Flach, C-F., Larsson, DGJ. (2014). Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. Environ Sci Technol., 48 (14):7825-32. doi: 10.1021/es501452a.
https://doi.org/10.1021/es501452a
Walsh, T R., Weeks, J., Livermore, D. M., Toleman, M. A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. The Lancet Infectious Diseases, 11(5), 355-362. doi: 10.1016/S1473-3099(11)70059-7.
https://doi.org/10.1016/S1473-3099(11)70059-7
Rathinasabapathi, P, Hiremath, DS, Arunraj, R and Parani, M. (2015). Molecular Detection of New Delhi Metallo-Beta-Lactamase-1 (NDM-1) Positive Bacteria from Environmental and Drinking Water Samples by Loop Mediated Isothermal Amplification of blaNDM-1. Indian J Microbiol, 55(4): 400-405. doi: 10.1007/s12088-015-0540-x.
https://doi.org/10.1007/s12088-015-0540-x
Struelens MJ, Monnet DL, Magiorakos AP, Santos O'Connor F, Giesecke J., European NDM-1 Survey Participants. (2010). The New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe. Euro Surveill 15(46):19716. doi: 10.2807/ese.15.46.19716-en.
https://doi.org/10.2807/ese.15.46.19716-en
Kumarasamy KK, Toleman MA, Walsh TR, et al. (2010). The emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 10: 597-602. doi:10.1016/S1473-3099(10)70143-2.
https://doi.org/10.1016/S1473-3099(10)70143-2
Deshpande P, Rodrigues C, Shetty A, Kapadia F, Hedge A, Soman R. (2010). New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae: treatment options with carbapenems compromised. J Assoc Physicians India. 58: 147-49. PMID: 20848811
Livermore DM, Walsh TR, Toleman M, Woodford N. (2010). BalkanNDM-1: escape or transplant? Lancet Infect Dis. 11: 164. doi:10.1016/S1473-3099(10)70202-X.
https://doi.org/10.1016/S1473-3099(11)70048-2
Jamwal P, Mittal AK, Mouchel JM. (2009). Efficiency evaluation of sewage treatment plants with different technologies in Delhi (India). Environ Monit Assess. 153: 293-305. doi: 10.1007/s10661-008-0356-9.
https://doi.org/10.1007/s10661-008-0356-9
Chen Y, Su J-Q., Zhang J., Chen, H., Zhang, B., Gin KY., He, Y. (2019). High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. Water Research 149, 179-189. doi: 10.1016/j.watres.2018.11.007
https://doi.org/10.1016/j.watres.2018.11.007
Eramo, A.; Medina, W. R. M.; Fahrenfeld, N. L. (2020). Factors associated with elevated levels of antibiotic resistance genes in sewer sediments and wastewater. Environ. Sci.: Water Res. Technol., 6, 1697-1710. doi: 10.1039/D0EW00230E
https://doi.org/10.1039/D0EW00230E
Bora A, Ahmed GU, Hazarika NK, Prasad KN, Shukla SK, Randhawa V., Sarma, JB. (2013). Incidence of blaNDM-1 gene in Escherichia coli isolates at a tertiary care referral hospital in Northeast India. Indian Journal of Medical Microbiology, 31(3): 250-256. doi:10.4103/0255-0857.115628
https://doi.org/10.4103/0255-0857.115628
Deshpande P, Rodrigues C, Shetty A, Kapadia F, Hedge A, Soman R. (2010). New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae: Treatment options with carbapenems compromised. J Assoc Physicians India, 58:147-9. PMID: 20848811.
Jamal WY, Albert MJ, Rotimi VO (2016). High Prevalence of New Delhi Metallo-βLactamase-1 (NDM-1) Producers among Carbapenem-Resistant Enterobacteriaceae in Kuwait. PloS one, 31:11(3): e0152638. doi: 10.1371/journal.pone.0152638.
https://doi.org/10.1371/journal.pone.0152638
Katouli M, Thompson JM, Gundogdu A, Stratton H.M. (2012). Antibiotic Resistant Bacteria in Hospital Wastewaters and Sewage Treatment Plants. In: Science Forum and Stakeholder Engagement: Building Linkages, Collaboration and Science Quality, 225-229.
Alam MZ, Aqil F, Ahmad I, Ahmad S. (2013). Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater. Braz J Microbiol., 44(3):799-806. doi: 10.1590/s1517-83822013000300021.
https://doi.org/10.1590/S1517-83822013000300021
Devarajan N, Laffite A, Mulaji CK, Otamonga JP, Mpiana PT, Mubedi JL, Prabakar K, Ibelings BW, Pote J. (2016). Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters. PloS one., 11(2): e0149211. doi:10.1371/journal.pone.0149211.
https://doi.org/10.1371/journal.pone.0149211
D'costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C., Froese, D., Zazula, G., Calmels, F., Debryune, R., Golding, GB., Poinar, HN., Wright, GD. (2011). Antibiotic resistance is ancient. Nature, 477 (7365):457-461. doi: 10.1038/nature10388.
https://doi.org/10.1038/nature10388
Gayathri D, Eramma NK, Devaraja TN. (2012). New Delhi metallo beta- Lactamase1: Incidence and threats. Int J Biol Med Res., 3(2): 1870-1874. ISSN: 0976:6685
Carattoli A, Villa L, Poirel L, Bonnin RA, Nordmann P. (2012). Evolution of IncA/C bla CMY-2-carrying plasmids by acquisition of the blaNDM-1 carbapenemase gene. Antimicrob Agents Chemother., 56 (2):783-786. doi: 10.1128/AAC.05116-11.
https://doi.org/10.1128/AAC.05116-11
Rafei R, Dabboussi F, Hamze M, Eveillard M, Lemarie C, Mallat H., Rolain J-M., Joly-Guillou, M-L., Kempf, M. (2014). First report of blaNDM-1-producing Acinetobacter baumannii isolated in Lebanon from civilians wounded during the Syrian war. Int J Infect Dis., 21:21- 23. doi: 10.1016/j.ijid.2014.01.004.
https://doi.org/10.1016/j.ijid.2014.01.004
Liu C, Qin S, Xu H, Xu L, Zhao D, Liu X., Lang, S., Feng, X., Liu, H-M. (2015). New Delhi Metallo-β-Lactamase 1(NDM-1), the Dominant Carbapenemase Detected in Carbapenem-Resistant Enterobacter cloacae from Henan Province, China. PloS one., 10(8): e0135044. doi: 10.1371/journal.pone.0135044
https://doi.org/10.1371/journal.pone.0135044
Zhang, C., Qiu, S., Wang, Y., Qi, L., Hao, R., Liu, X., ... & Song, H. (2013). Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PloS one, 8(6), e64857. doi: 10.1371/journal.pone.0064857
https://doi.org/10.1371/journal.pone.0064857
Chandran SP, Diwan V, Tamhankar AJ, Joseph BV, Rosales-Klintz S, Mundayoor S, Lundborg CS, Macaden R. (2014). Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in Escherichia coli in hospital wastewater: a matter of concern. J Appl Microbiol.,117(4):984-995. doi: 10.1111/jam.12591.
https://doi.org/10.1111/jam.12591
Isozumi, R., Yoshimatsu, K., Yamashiro, T., Hasebe, F., Nguyen, BM., Ngo, TC., Yasuda, SP., Koma, T., Shimuzu, K., Arikawa, J. (2012). bla(NDM-1)-positive Klebsiella pneumoniae from environment, Vietnam. Emerges Infect Dis., 18(8):1383-1385. doi: 10.3201/eid1808.111816.
https://doi.org/10.3201/eid1808.111816
Foxman B. (2014). Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am., 28 (1): 1-13. doi: 10.1016/j.idc.2013.09.003.
https://doi.org/10.1016/j.idc.2013.09.003
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K., Walsh, TR. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-1 and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother., 53 (12):5046-5054. doi: 10.1128/AAC.00774-09.
Downloads
Published
How to Cite
Issue
Section
License
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.
To download Copyright Transfer Statement for Journal, click here