Optimisation of Water Absorption Parameters of Bagasse, Cocoa Pod Husk and Guinea Fowl Feather Reinforced Hybrid Epoxy Composites using Taguchi Method

Authors

  • Chris Abiodun Ayanladun Department of Mechanical Engineering, University of Lagos, Lagos, Nigeria
  • Sunday Ayoola Oke Department of Mechanical Engineering, University of Lagos, Lagos, Nigeria

DOI:

https://doi.org/10.33736/jaspe.3015.2021

Keywords:

Reinforcement, Optimisation, Water Absorption, Particulates.

Abstract

Particulate waste of bagasse, cocoa pod husk and guinea fowl feathers may be adopted to fabricate epoxy composites due to their properties of biodegradability, lightweight and cheapness. However, most research has excluded the combination of these reinforcements while the optimisation behaviour of the reinforced composites at room temperature water absorption process is not known. To fill this knowledge gap, this paper aims to analyse issues related to optimisation of the mentioned reinforced composites considering Taguchi’s L25 orthogonal array, the smaller the better signal-to-noise criterion and remodelling of signal-to-noise ratio after the exponential smoothening structure for optimisation. The experiment considered 25% reinforcement blends to 75% epoxy resin. But the 25% reinforcement had five formulations among the component reinforcements. The experiment, using tap water, was conducted for 216 days with measurement intervals random. The response table yielded A5B5C4, indicating 158 experimental days, 12.29g of weight gained by the drained composites, and 7.32g of weight gained by composites damped in 190ml of water. The revised response table that has been influenced by the exponential smoothening method yielded A5B5C5, interpreted as 158 days of experiments, 12.29g of weight gained by the drained composites, and 7.44g of weight gained by composites dumped in 190ml of water. Using the damping factors from 0.05 to 1, different combinations as optimal parameters were obtained, assuring the investigator that the method is feasible. Thus, the optimisation assessment could provide a new method of combining the reinforcement to enhance the composite development process using waste.

Author Biography

Chris Abiodun Ayanladun, Department of Mechanical Engineering, University of Lagos, Lagos, Nigeria

He is a student

References

Castro, A. M., Ribeiro, M. C. S., Santos, J., Meixedo, J. P., Silva, F. J., Fiúza, A. & Alvim, M. R. (2013). Sustainable waste recycling solution for the glass fibre reinforced polymer composite materials industry. Construction and Building Materials, 45, 87-94..

https://doi.org/10.1016/j.conbuildmat.2013.03.092

Pillain, B., Lefeuvre, A., Garnier, S., Cadene, A. L., & Jacquemin, L. (2020). Sustainability engineering assessment research for recycling composites with high value: Stakeholders' views. Sustainable Development, 28(1), 197-207..

https://doi.org/10.1002/sd.1986

Bansal G. and Singh V.K. (2016). Review on chicken feather fibre (CFF) as livestock waste in composite material development, International Journal of Water Resources, Vol.6, No.4, DOI; 10.4172/2252-5211.1000254

El-Shekeil, Y. A., Sapuan, S. M., & Algrafi, M. W. (2014). Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites. Materials & Design, 64, 330-333..

https://doi.org/10.1016/j.matdes.2014.07.034

Chun K.S., Husseinsyah S., Osman H. (2014). Development of biocomposites from cocoa pod husk and polypropylene: Effect of filler content and 3-Aminopropy/triethoxy/silane, Polymers and Renewable Resources, Vol. 5, No. 4, 139-15.

https://doi.org/10.1177/204124791400500401

Chun, K. S., Husseinsyah, S., & Osman, H. (2014). Development of biocomposites from cocoa pod husk and polypropylene: effect of filler content and 3-aminopropyltriethoxylsilane. Polymers from Renewable Resources, 5(4), 139-156.

https://doi.org/10.1177/204124791400500401

Chun, K. S., & Husseinsyah, S. (2016). Agrowaste-based composites from cocoa pod husk and polypropylene: effect of filler content and chemical treatment. Journal of thermoplastic composite materials, 29(10), 1332-1351.

https://doi.org/10.1177/0892705714563125

Chun, K. S., Husseinsyah, S., & Yeng, C. M. (2017). Torque rheological properties of polypropylene/cocoa pod husk composites. Journal of Thermoplastic Composite Materials, 30(9), 1217-1227.

https://doi.org/10.1177/0892705715618743

Hemnath A., Anbuchezhiyan G., NanthaKumar P., Senthilkumar N. (2020). Tensile and flexural behaviour of rice husk and sugarcane bagasse reinforced polyester composites, Materials Today: Proceedings.

https://doi.org/10.1016/j.matpr.2020.11.786

Palanivendhan M., Chandaradass J., Philip J. (2020). Fabrication and mechanical properties of aluminium alloy/bagasse ash composite by stir casting method, Materials Today: Proceedings,

https://doi.org/10.1016/j.matpr.2020.11.458

Kumar P.V., Paranthaman P. (2020). Friction stir welding process parametric optimization of hybrid aluminium- bagasse ash- graphite composite by Taguchi approach, Materials Today: Proceedings, Vol. 37, Part 2, 2021, 764-768.

https://doi.org/10.1016/j.matpr.2020.05.789

Kawin N., Jagadeesh D., Saravanan G., Periasamy K. (2020). Optimization of turning parameters in sugarcane bagasse ash reinforced with Al-Si10-Mg alloy composites by Taguchi method, Materials Today: Proceedings, 21, Part 1, 474-476.

https://doi.org/10.1016/j.matpr.2019.06.634

Bhat S.A. , Singh J. , Vig A.P. (2016). Management of sugar industrial wastes through vermitechnology, International Letters of Natural Science, 55, 35-43 DOI 10.18052/www.scipress.com/ILNS.55.35

https://doi.org/10.18052/www.scipress.com/ILNS.55.35

Bari M.N. , and Ahmed T. (2016). Characterization of sugar industry wastes for solid state bioconversion, Proceedings of the 3rd International Conference on Civil Engineering for Sustainable Development (ICCESD-2016), At: KUET, Khulna, Bangladesh. ISBN: 978-984-34-0265-3

Ayanladun, C., & Oke, S. (2020). A Sensitivity Analysis of Water Absorption Parameters of Theobroma Cacao L. Reinforced Epoxy Composites. Journal of Applied Science & Process Engineering, 7(2), 587-610..

https://doi.org/10.33736/jaspe.2604.2020

Devadiga D.G., Bhat K.S. & Mahesha G.T. (2020). Sugarcane bagasse fiber reinforced composites: Recent advances and applications, Cogent Engineering, 7(1), Article 1823159

https://doi.org/10.1080/23311916.2020.1823159

Kiatkittipong W., Wongsuchoto P. & Pavasant P. (2009). Life cycle assessment of bagasse waste management options, Waste Management, 29(5), 1628-1633.

https://doi.org/10.1016/j.wasman.2008.12.006

Abubakar M., El-Okene A.M., Buba A.N., Mohammed U.S. (2014).Investigation of properties of guinea fowl feather for engineering application, International Journal of Engineering Research and Technology, Vol. 3, No 5, 2484-2488. ISSN 2278-0181

Verma A, Negi P. & Singh V.K. (2018). Experimental investigation of chicken feather fibre and crumb rubber reformed epoxy resin hybrid composite: mechanical and microstructural characterization, Journal of the Mechanical Behaviour of Materials, Vol.27, No. 3-4, 1-24.

https://doi.org/10.1515/jmbm-2018-0014

• Oladele, I. O., Okoro, A. M., Omotoyinbo, J. A., & Khoathane, M. C. (2018). Evaluation of the mechanical properties of chemically modified chicken feather fibres reinforced high density polyethylene composites. Journal of Taibah University for Science, 12(1), 56-63.

https://doi.org/10.1080/16583655.2018.1451103

Taghiyari H.R, Majidi R., Esmail pour A. Samachi Y.S., Jahangiri A., Papadopoulos A.N. (2020). Engineering composites made from wood and chicken feather bonded with UF resin fortified with wollastonite: A novel approach, Polymers, Vol.12, Article 857

https://doi.org/10.3390/polym12040857

Zhan M. and Wool R.P. (2016). Mechanical properties of composites with chicken feather and glass fibre, Applied Polymer Science, 133, Article 44013

https://doi.org/10.1002/app.44013

Suherman, H., & Sahari, J. (2015). Optimization of Moulding Parameters on the Electrical Conductivity of Carbon Black/Graphite/Epoxy Composite for Bipolar Plateusing the Taguchi Method. In Advanced Materials Research (Vol. 1119, pp. 201-206). Trans Tech Publications Ltd.

https://doi.org/10.4028/www.scientific.net/AMR.1119.201

Kiran Z.S., Babu V.S., Saisrinadh K.V. (2018). Effect of nanoclay, glass fiber volume and orientation on tensile strength of epoxy-glass composite and optimization using Taguchi method, World Journal of Engineering, Vol. 15 No. 2, 312-320.

https://doi.org/10.1108/WJE-08-2017-0286

Pang J.S. , Ansari M.N.M. , Zaroog O.S. , Alim H. , Sapuan S.M. (2013). Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminum reinforced epoxy matrix (HNT/AL/EP) hybrid composite, Housing and Building Research Center Journal

https://doi.org/10.1016/j.hbrcj.2013.09.007

Bagci, M., & Imrek, H. (2013). Application of Taguchi method on optimization of testing parameters for erosion of glass fiber reinforced epoxy composite materials. Materials & Design, 46, 706-712.

https://doi.org/10.1016/j.matdes.2012.11.024

Costa U.O., Naximento L.F.C. ,Garcial J.M. , Bezerra W.B.A. , Monteiro S.N. (2020). Evaluation of izod impact and bend properties of epoxy composites reinforced with mallow fibers, Journal of Materials Research and Technology, Vol. 9, No. 1, 373-382

https://doi.org/10.1016/j.jmrt.2019.10.066

Wang Y., Yang H., Tian Z., Yang B., Xian G., Weng J., Chen S., Ding X., Luo W. (2020). Mode 1: Interlaminar crack length prediction by the resistance signal of the integrated MWCNT sensor in WGF/epoxy composites during DCB test, Journal of Materials Research and Technology, 9(3), 5922-5933.

https://doi.org/10.1016/j.jmrt.2020.03.119

da Costa Garcia Filho, F., da Luz, F. S., Oliveira, M. S., Pereira, A. C., Costa, U. O., & Monteiro, S. N. (2020). Thermal behavior of graphene oxide-coated piassava fiber and their epoxy composites. Journal of Materials Research and Technology, 9(3), 5343-5351.

https://doi.org/10.1016/j.jmrt.2020.03.060

Ige O.E. I, Inambao F. L., Adewumi G. A. (2019). Biomass-based composites for brake pads: a review, International Journal of Mechanical Engineering and Technology, 10(3), 920-943. ISSN Online: 0976-6359

Loh Y.R., Sujaria D, Rahman M.E., Das C.A. (2013). Sugarcane bagasse - The future composite material: A literature review, Resources, Conservation and Recycling, Vol. 75, 14-22.

https://doi.org/10.1016/j.resconrec.2013.03.002

Xiong W. (2018). Bagasse composites: A review of material preparation, attributes, and affecting factors, Journal of Thermoplastic Composite Materials, Vol 31, No. 8, 1112-1146.

https://doi.org/10.1177/0892705717734596

Vidyashri V., Lewis H., Narayanasamy P., Mahesha G.T., Bhat K.S. (2019). Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterization, Cogent Engineering, Vol.,6, No., Article 1708644,

https://doi.org/10.1080/23311916.2019.1708644

Kumar, T. S., Shalini, S., Kumar, K. K., Thavamani, R., & Subramanian, R. (2018). Bagasse Ash reinforced A356 alloy composite: synthesis and characterization. Materials Today: Proceedings, 5(2), 7123-7130..

https://doi.org/10.1016/j.matpr.2017.11.377

Imoisili, P. E., Ezenwafor, T. C., AttahDaniel, B. E., & Olusunle, S. O. O. (2013). Mechanical properties of Cocoa-Pod/Epoxy composite; effect of filler fraction. American Chemical Science Journal, 3(4), 526-531.

https://doi.org/10.9734/ACSJ/2013/5526

Imoisili PE, Etiobho BW, Ezenwafor TC, Attah-Daniels BE, Olusunle S.O. (2013b). Physicochemical analysis of cocoa pod and its effect as a filler in polymer resin composite, International Journal of Science and Technology, Vol. 2, No. 1, 89-93.

Imoisili P.E., Jiddah-Kazeem B., Yahaya L.E. (2016). Kinetic studies on water absorption properties of cocoa-pod epoxy composites, Iranian Journal of Energy and Environment, Vol. 7, No. 1, 48-51

Ramakrishnan S., Krishnamurthy K., Rajasekar R. and Rajeshkumar G. (2018). An experimental study on the effect of nano-clay addition on mechanical and water absorption behaviour of jute fibre reinforced epoxy composites, Journal of Industrial Textiles, 1-24.

https://doi.org/10.1177/1528083718792915

Mohammadi, M., Samadi, S., & Najafpour Darzi, G. (2016). Production of single cell protein from sugarcane bagasse by Saccharomyces cerevisiae in tray bioreactor. International Journal of Engineering, 29(8), 1029-1036.

https://doi.org/10.5829/idosi.ije.2016.29.08b.01

Mansur D., Tago T., Haznan T.M., Abimanyu A.H. 2014, Conversion of cacao pod husks by pyrolysis and catalytic reaction to produce useful chemicals, Biomass and Bioenergy, Vol. 66, 275-285.

https://doi.org/10.1016/j.biombioe.2014.03.065

Abubakar M., El-Okene A.M., Buba A.N., Mohammed U.S. (2014). Investigation of properties of guinea fowl feather for engineering application, International Journal of Engineering Research & Technology, Vol. 3, No. 5, 2484-2488. ISSN 2278-0181

Nwafor S., Oke S., Ayanladun C. (2019). Taguchi optimization of cast geometries for A356/organic particulate aluminium alloy composites using a two-phase casting process, Journal of Applied Science & Process Engineering, Vol. 6, No. 2, 386-411.

https://doi.org/10.33736/jaspe.1722.2019

Ajibade O.A., Agunsoye J.O., Oke S.A. (2019). Optimisation of water absorption parameters of dual-filler filled composites using Taguchi and moderated Taguchi techniques, Kufa Journal of Engineering, Vol. 10, No. 2, 134-151.

https://doi.org/10.30572/2018/kje/100211

Saxena M., Pappu A., Sharma A., Haque R. and Wankhede S. (2011). Composite Materials from natural resources: Recent trend and future potentials, Chapter 6, Open Peer Reviewed Chapter, 121-162. IntechOpen Limited, London, UK.

https://doi.org/10.5772/18264

Downloads

Published

2021-04-30

How to Cite

Ayanladun, C. A. ., & Oke, S. A. (2021). Optimisation of Water Absorption Parameters of Bagasse, Cocoa Pod Husk and Guinea Fowl Feather Reinforced Hybrid Epoxy Composites using Taguchi Method . Journal of Applied Science &Amp; Process Engineering, 8(1), 786–805. https://doi.org/10.33736/jaspe.3015.2021