Taguchi Method and Taguchi-Pareto Scheme to Evaluate Diffusivity during the Development of Orange Peel Epoxy Composites

  • Oluwaseyi Ayodele Ajibade Department of Metallurgical and Materials Engineering, University of Lagos, Lagos, Nigeria
  • Johnson Olumuyiwa Agunsoye Department of Metallurgical and Materials Engineering, University of Lagos, Lagos, Nigeria
  • Sunday Ayoola Oke Department of Mechanical Engineering, University of Lagos, Lagos, Nigeria
Keywords: Orange Peel Epoxy Composites, Optimization, Taguchi, Diffusivity, ANOVA


The diffusion parameters of orange peel epoxy composites are important elements in composite structure in that they explain how fast water and other fluids can diffuse through the composites as a sign of integrity test. In this article, we defined the optimal parametric settings for diffusivity parameters of orange peel epoxy composites. The Taguchi optimisation method used obtained an optimal parametric setting of P4Q4R1 in experiments conducted for three and seven days, respectively. The analysis of variance revealed significant contributions made by the initial and final weights, while the thickness parameter was found to be less significant. A variant of the Taguchi method called Taguchi-Pareto was introduced, which also underscores the thickness parameter as not economical to optimality. The specifications and dimensions obtained by Taguchi method or its variant may be useful design engineers when contemplating on how to reduce diffusivity and water uptake of composites.

Author Biographies

Oluwaseyi Ayodele Ajibade, Department of Metallurgical and Materials Engineering, University of Lagos, Lagos, Nigeria

He lectures in the university

Johnson Olumuyiwa Agunsoye, Department of Metallurgical and Materials Engineering, University of Lagos, Lagos, Nigeria

He lectures in the university


Chen, R. S., Muhammad, Y. H., & Ahmad, S. (2021). Physical, mechanical and environmental stress cracking characteristics of epoxy/glass fiber composites: Effect of matrix/fiber modification and fiber loading. Polymer Testing, 96, 107088. https://doi.org/10.1016/j.polymertesting.2021.107088

Deng, Y., Li, W., Ma, J., & Li, Y. (2021). Thermal-mechanical-oxidation coupled first matrix cracking stress model for fiber reinforced ceramic-matrix composites. Journal of the European Ceramic Society, 41(7), 4016-4024. https://doi.org/10.1016/j.jeurceramsoc.2021.02.033

Fudger, S., Sediako, D., Karandikar, P., & Ni, C. (2017). Residual stress induced mechanical property enhancement in steel encapsulated light metal matrix composites. Materials Science and Engineering: A, 699, 10-17. https://doi.org/10.1016/j.msea.2017.05.073

Chowdhury, A. F., Mari, D., & Schaller, R. (2009). Analysis of transient mechanical loss due to thermal stresses in metal matrix composites. Materials Science and Engineering: A, 521, 310-313.. https://doi.org/10.1016/j.msea.2008.09.085

Ghasemi, A. R., Mohammadi, M. M., & Mohandes, M. (2015). The role of carbon nanofibers on thermo-mechanical properties of polymer matrix composites and their effect on reduction of residual stresses. Composites Part B: Engineering, 77, 519-527. https://doi.org/10.1016/j.compositesb.2015.03.065

Gupta, A., Joshi, A., Tejyan, S., Gangil, B., & Singh, T. (2020). Comparative study of mechanical properties of orange peel filled epoxy composites joined by a mechanical fastener. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.11.020

Awasthi, A., & Saxena, K. K. (2019). Evaluation of Mechanical Properties of Orange Peel Reinforced Epoxy Composite. Materials Today: Proceedings, 18, 3821-3826. https://doi.org/10.1016/j.matpr.2019.07.320

Ajibade O.A., Agunsoye J.O. & Oke S.A. (2016). Tapped density optimization for four agricultural wastes: Part II - Performance analysis, main effects of process parameters and Taguchi-Pareto, Acta Periodica Technologica, 47, 129-142. DOI:10.2298/APT1647129A

Ajibade O.A., Agunsoye J.O. & Oke S.A. (2019). Optimization of water absorption parameters of dual-filler filled composites using Taguchi and moderated Taguchi techniques, Kufa Journal of Engineering, 10(2), 134-151.

Okanminiwei L. & Oke S.A., (2020). Optimization of maintenance downtime for handling equipment in a container terminal using Taguchi scheme, Taguchi-Pareto method and Taguchi-ABC method, Indonesian Journal of Industrial Engineering & Management, 1(2), 69-90.

Oji, B.C. & Oke, S.A. (2020). Optimization of bottling process using “hard” total quality management elements, The TQM Journal, Vol. 33 No. 2, pp. 473-502. https://doi.org/10.1108/TQM-03-2020-0057

Obradović T., Vlačić B. & Dabića M. (2021). Open innovation in the manufacturing industry: A review and research agenda, Technovation, 102, Article 102221. https://doi.org/10.1016/j.technovation.2021.102221

Tasnim, S., Shaikh, F. U. A., & Sarker, P. K. (2021). Mechanical properties and microstructure of lightweight polymer composites containing mono and hybrid fillers sourced from recycled solid wastes. Construction and Building Materials, 277, 122369. https://doi.org/10.1016/j.conbuildmat.2021.122369

Anoopisan, Barath L. & Nagakalyan S. (2015). Interfacial behaviour of composites of polymer and orange peel particulates, International Journal on Theoretical and Applied Research in Mechanical Engineering, 4 (4), 27-33. ISSN: 2319-3182

Ojha S., Raghavendra G., Acharya S.K., Kumar P. (2012). Fabrication and study of mechanical properties of orange peel reinforced polymer composite, Caspian Journal of Applied Sciences Research, 1(13), 190-194.

Victor, A., Atuanya, C. U., Igogori, E. A., & Ihom, P. (2013). Development of high-density polyethylene/orange peels particulate bio-composite. Gazi University Journal of Science, 26(1), 107-117. e-ISSN 2147-1762

Aigbodion, V. S., Hassan, S. B., & Atuanya, C. U. (2012). Kinetics of isothermal degradation studies by thermogravimetric data: effect of orange peels ash on thermal properties of high density polyethylene (HDPE). Journal Material Environment Science, 3(6), 1027-36. ISSN : 2028-2508

Praveenkumar K. & Nagaraj C. (2016). An investigation on mechanical characterization of orange peel reinforced epoxy composite, IOSR Journal of Mechanical and Civil Engineering, 33-41.e-ISSN 2278-1684

Karthikayan S., Balakumaran A., Abilesh R., Buraneshwaran S., Jeeva P. & Knowshichrajs N. (2021). Mechanical properties of orange peel reinforced epoxy composite, International Research Journal of Modernization in Engineering Technology and Science, 3(3), 1889-1894. e-ISSN: 2582-5208

Masoodi R. and Pillai K.M. (2012). A study on moisture absorption and swelling in bio-based jute-epoxy composites, Journal of Reinforced Plastics and Composites, 31(5), 285-294. https://doi.org/10.1177/0731684411434654

Dhakal, H. N., Zhang, Z. A., & Richardson, M. O. W. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites science and technology, 67(7-8), 1674-1683. https://doi.org/10.1016/j.compscitech.2006.06.019.

Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer testing, 31(5), 620-628. https://doi.org/10.1016/j.polymertesting.2012.04.002.

Leman, Z., Sapuan, S. M., Saifol, A. M., Maleque, M. A., & Ahmad, M. M. H. M. (2008). Moisture absorption behavior of sugar palm fiber reinforced epoxy composites. Materials & Design, 29(8), 1666-1670. https://doi.org/10.1016/j.matdes.2007.11.004.

Brodowsky, H., & Mäder, E. (2007). Jute fibre/polypropylene composites II. Thermal, hydrothermal and dynamic mechanical behaviour. Composites Science and Technology, 67(13), 2707-2714. https://doi.org/10.1016/j.compscitech.2007.02.011 .

Karmaker, A. C. (1997). Effect of water absorption on dimensional stability and impact energy of jute fibre reinforced polypropylene. Journal of materials science letters, 16(6), 462-464. https://doi.org/10.1023/A:1018508209022.

Akil, H. M., Cheng, L. W., Ishak, Z. M., Bakar, A. A., & Abd Rahman, M. A. (2009). Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Composites Science and Technology, 69(11-12), 1942-1948. https://doi.org/10.1016/j.compscitech.2009.04.014.

Gassan J and Bhedski A.K. (1999). Effect of cylic moisture absorption and desorption on mechanical properties of salinized jute-epoxy composites, Polymer Composites, 20 (4), 604-611. https://doi.org/10.1002/pc.10383

Costa, F. H. M. M., & d'Almeida, J. R. M. (1999). Effect of water absorption on the mechanical properties of sisal and jute fiber composites. Polymer-Plastics Technology and Engineering, 38(5), 1081-1094. https://doi.org/10.1080/03602559909351632

Jawaid, M. H. P. S., Khalil, H. A., Khanam, P. N., & Bakar, A. A. (2011). Hybrid composites made from oil palm empty fruit bunches/jute fibres: Water absorption, thickness swelling and density behaviours. Journal of Polymers and the Environment, 19(1), 106-109. https://doi.org/10.1007/s10924-010-0203-2.

Zahari W. Z., Badri R.N., Ardyananta H., Kurniawan D., Nor F.M. (2015). Mechanical properties and water absorption behavior of polypropylene/jute fiber composite by using sitarre treatment, Procedia Manufacturing, 2, 573-578. ISSN: 2351-9789

Ghosh, R., Ramakrishna, A., Reena, G., Ravindra, A., & Verma, A. (2014). Water absorption kinetics and mechanical properties of ultrasonic treated banana fiber reinforced-vinyl ester composites. Procedia Materials Science, 5, 311-315. https://doi.org/10.1016/j.mspro.2014.07.272.

Alomayri, T., Assaedi, H., Shaikh, F. U. A., & Low, I. M. (2014). Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Journal of Asian ceramic societies, 2(3), 223-230. https://doi.org/10.1016/j.jascer.2014.05.005.

Amran, U. A., Zakaria, S., Chia, C. H., Jaafar, S. N. S., & Roslan, R. (2015). Mechanical properties and water absorption of glass fibre reinforced bio-phenolic elastomer (BPE) composite. Industrial Crops and Products, 72, 54-59. https://doi.org/10.1016/j.indcrop.2015.01.054.

Ridzuan, M. J. M., Majid, M. A., Afendi, M., Azduwin, K., Amin, N. A. M., Zahri, J. M., & Gibson, A. G. (2016). Moisture absorption and mechanical degradation of hybrid Pennisetum purpureum/glass–epoxy composites. Composite Structures, 141, 110-116. https://doi.org/10.1016/j.compstruct.2016.01.030.

Hosseinihashemi, S. K., Arwinfar, F., Najafi, A., Nemli, G., & Ayrilmis, N. (2016). Long-term water absorption behavior of thermoplastic composites produced with thermally treated wood. Measurement, 86, 202-208. https://doi.org/10.1016/j.measurement.2016.02.058.

Hoto, R. E. N. E., Furundarena, G., Torres, J. P., Muñoz, E., Andrés, J., & García, J. A. (2014). Flexural behavior and water absorption of asymmetrical sandwich composites from natural fibers and cork agglomerate core. Materials Letters, 127, 48-52. https://doi.org/10.1016/j.matlet.2014.04.088.

Megiatto Jr, J. D., Ramires, E. C., & Frollini, E. (2010). Phenolic matrices and sisal fibers modified with hydroxy terminated polybutadiene rubber: Impact strength, water absorption, and morphological aspects of thermosets and composites. Industrial Crops and Products, 31(1), 178-184. https://doi.org/10.1016/j.indcrop.2009.10.001.

Hosseinaei, O., Wang, S., Taylor, A. M., & Kim, J. W. (2012). Effect of hemicellulose extraction on water absorption and mold susceptibility of wood–plastic composites. International Biodeterioration & Biodegradation, 71, 29-35. https://doi.org/10.1016/j.ibiod.2011.12.015.

Manfredi, L. B., De Santis, H., & Vázquez, A. (2008). Influence of the addition of montmorillonite to the matrix of unidirectional glass fibre/epoxy composites on their mechanical and water absorption properties. Composites Part A: Applied Science and Manufacturing, 39(11), 1726-1731. https://doi.org/10.1016/j.compositesa.2008.07.016.

Zhai, Z., Feng, L., Liu, Z., Zhou, S., Lou, H., & Li, G. (2015). Water absorption and mechanical property of an epoxy composite coating containing unoxidized aluminum particles. Progress in Organic Coatings, 87, 106-111. https://doi.org/10.1016/j.porgcoat.2015.05.018.

Shinoj, S., Panigrahi, S., & Visvanathan, R. (2010). Water absorption pattern and dimensional stability of oil palm fiber–linear low density polyethylene composites. Journal of Applied Polymer Science, 117(2), 1064-1075. https://doi.org/10.1002/app.31765.

Espert, A., Vilaplana, F., & Karlsson, S. (2004). Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied science and manufacturing, 35(11), 1267-1276. https://doi.org/10.1016/j.compositesa.2004.04.004.

Ramezani Kakroodi, A., Leduc, S., & Rodrigue, D. (2012). Effect of hybridization and compatibilization on the mechanical properties of recycled polypropylene‐hemp composites. Journal of Applied Polymer Science, 124(3), 2494-2500. https://doi.org/10.1002/app.35264

Haque, M. M. U., Alvarez, V., Paci, M., & Pracella, M. (2011). Processing, compatibilization and properties of ternary composites of Mater-Bi with polyolefins and hemp fibres. Composites Part A: Applied Science and Manufacturing, 42(12), 2060-2069. https://doi.org/10.1016/j.compositesa.2011.09.015.

JA, M. H., Majid, M. A., Afendi, M., Marzuki, H. F. A., Hilmi, E. A., Fahmi, I., & Gibson, A. G. (2016). Effects of water absorption on Napier grass fibre/polyester composites. Composite Structures, 144, 138-146. https://doi.org/10.1016/j.compstruct.2016.02.067.

Munoz E. and Garcia-Manrique J.A. (2015). Water absorption behavior and its effects on the mechanical properties of flax reinforced bio-epoxy composites, International Journal of Polymer Science, Vol. 2015, Article ID 390275, pp. 1-10. https://doi.org/10.1155/2015/390275

Prabhakaran M. (2015). Design and analysis of mono leaf spring using hybrid fiber-reinforced polymer composite materials with additive as molybdenum in automobiles, Ph.D. Thesis, Faculty of Mechanical Engineering, Anna University, Chennai, India

How to Cite
Ajibade, O. A., Agunsoye, J. O., & Oke, S. A. (2021). Taguchi Method and Taguchi-Pareto Scheme to Evaluate Diffusivity during the Development of Orange Peel Epoxy Composites. Journal of Applied Science & Process Engineering, 8(1), 765-785. https://doi.org/10.33736/jaspe.3011.2021