Jute Stick Powder: A new approach to efficient biosorbent for the simultaneous removal of Pb, Cr and Cd from waste water

Authors

  • Mohammad Nasir Uddin Department of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh
  • Monir Uddin Department of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh
  • Ibrahim Khalil Department of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh
  • Jahangir Alam Department of Chemistry, University of Chittagong, Chittagong-4331, Bangladesh
  • A.K.M. Atique Ullah Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh

DOI:

https://doi.org/10.33736/jaspe.2641.2020

Keywords:

Biosorption, jute stick powder (JSP), Pb(II), Cr(III) and Cd(II) ions, isotherm, wastewater

Abstract

This research was aimed to evaluate the potential of biosorption technique in more realistic conditions that appeal to the industry by exploiting locally available biosorbents such as jute stick powder (JSP), an agricultural product, for the removal of toxic Pb(II), Cr(III) and Cd(II) ions from wastewater. Fourier transform infrared spectroscopy (FTIR) and Scanning electron micrographs (SEM) analysis proved that the surface of biosorbent was porous, with heterogeneous structures that contained high internal spaces. The removal efficiencies of the mixture of the target metals by JSP were optimized with respect to pH, initial metal concentration, shaking time and biomass dose. Biosorption performance of JSP in multiple metal systems was above 90 percent adsorption for tested metal ions. Biomass regeneration efficiencies up to 98% were achieved using acid as eluent. Sorption performance of the JSP as biosorbent was examined by classical adsorption equilibrium isotherms, kinetics in batch systems, and dynamic continuous flow studies. Batch sorption studies revealed that pseudo-first, pseudo-second-order, and Langmuir isotherm models were suitable to describe the metals sorption kinetics and equilibrium, respectively.

References

Aakame, R.B., Fekhaoui, M., Bellaouchou, A., El Abidi A., El Abbassi, M. & Saoiabi, A. (2015) Assessment of physicochemical quality of water from Groundwater in the areas of Northwest of Morocco and Health hazard. J. Mater. Environ. Sci. Vol.6, No.5, 1228-1233

Mishra, A., Tripathi, B.D. & Rai, A. K. (2014) Biosorption of Cr(VI) and Ni(II) onto Hydrillaverticillata dried biomass. Ecol. Eng. 73, 713-723.

https://doi.org/10.1016/j.ecoleng.2014.09.057

Ege, A. & Doner, G. (2013) E3S Web of Conferences. 25009.

https://doi.org/10.1051/e3sconf/20130125009

Ogbo, E. M. & Okhuoya, J. A. (2011) Bio-Absorption of Some Heavy Metals by Pleurotus tuber-regium Fr. Singer (an Edible Mushroom) from Crude Oil Polluted Soils Amended with Fertilizers and Cellulosic Wastes. J. of Biol. Sci. 4, 34-48.

https://doi.org/10.3923/ijss.2011.34.48

Akbari, M., Hallajisani, A., Keshtkar, A.R., Shahbeig, H. & Ghorbanian S.A. (2015) Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. J. Environ. Chem. Eng. Vol.3, No.1, 140-149.

https://doi.org/10.1016/j.jece.2014.11.004

Hasan, H.A., Abdullah, S.R.S., Kofli, N.T. & Yeoh, S.J. (2016) Interaction of environmental factors on simultaneous biosorption of lead and manganese ions by locally isolated Bacillus cereus. J. Ind. Eng. Chem. Vol.37, 295-305.

https://doi.org/10.1016/j.jiec.2016.03.038

Ahmed, A.T.B., Mandal, S., Chowdhury, D.A., Rayhan, M.A. & Rahman, M. (2012) Bioaccumulation of Some Heavy Metals in Ayre Fish (SperataA or Hamilton, 1822), Sediment and Water of Dhaleshwari River in Dry Season. Bangladesh J. Zool. Vol.40, 147-153.

https://doi.org/10.3329/bjz.v40i1.12904

Volesky, B. Biosorption and me. (2007) Water Res. Vol.41, 4017- 4029.

https://doi.org/10.1016/j.watres.2007.05.062

Zouboulis, A., Loukido, M. & Matis, K. (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem. Vol.39, 909-916.

https://doi.org/10.1016/S0032-9592(03)00200-0

Volesky, B. (2003) Sorption and Biosorption, BV-Sorbex. Inc., St. Lambert, Quebec.

Lokeshwari, N. & Joshi, K. (2009) Biosorption of Heavy Metal (Chromium) Using Biomass. Global J. Environ. Res. Vol.3, No.1, 29-35.

Tsezos, M. (1990) Engineering aspects of metal binding by biomass, H.L. Ehrlich, C.L. Brierly (Eds.), Microbial Mineral Recovery, McGraw-Hill, USA, 325-339.

Elmorsi, T.M. (2011) Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. J. Envi. Prot. 2(6), 817-827.

https://doi.org/10.4236/jep.2011.26093

Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. Vol.40, No.9, 1361-1403.

https://doi.org/10.1021/ja02242a004

Mckay, G., Blair, H.S. & Gardener, J.K. (1982) Adsorption of dyes on chitin: equilibrium studies. J. of Appl. Pol. Sci. 27, 3043-3057.

https://doi.org/10.1002/app.1982.070270827

Kadirvelu, K. & Namasivayan, C. (2006) Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous. Chem. Eng. J. Vol.122, No.1-2, 93-106.

Shahwan, T., Akar, D. & Eroğlu, A.E. (2005) Physicochemical characterization of the retardation of aqueous Cd2+ ions by natural kaolinite and clinoptilolite minerals. J. of Colloid Inter. Sci., Vol.285, 9-17.

https://doi.org/10.1016/j.jcis.2004.11.016

Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B. & Guven, K. (2009) Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., Vol.152, No.1, 195-206.

https://doi.org/10.1016/j.cej.2009.04.041

Lagergren, Z. (1898) Theorie der sogenannten Adsorption gelosterStoffe. Kungliga Svenska Vetenskapsakademiens Handlingar. Vol. 24, 1-39.

Qiu, H., Lu, L.V., Pan, B., Zhang, Q., Zhang, W. & Zhang, Q. (2009) Critical review in adsorption kinetic models. J. Zhejiang Uni. Sci. Vol.10, No.5, 716-724.

https://doi.org/10.1631/jzus.A0820524

Namasivayam, C. & Sangeetha, D. (2005) Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste. Chemosphere, Vol. 60, No.11, 1616-1623.

https://doi.org/10.1016/j.chemosphere.2005.02.051

Ho, Y.S. & McKay, G. (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. Vol. 34, No.3, 735-742.

https://doi.org/10.1016/S0043-1354(99)00232-8

Li, F.T., Yang, H., Zhao, Y. & Xu, R. (2007) Novel modified pectin for heavy metal adsorption. Chin. Chem. Lett. 18, 325-328.

https://doi.org/10.1016/j.cclet.2007.01.034

Ashkenazy, R., Gottlieb, L. & Yannai, S. (1997) Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption. Biotechnol. Bioeng. Vol.55, 1-10.

https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<1::AID-BIT1>3.0.CO;2-H

Iqbal, M., Saeed, A. & Zafar, S.I. (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. Vol.164, 161-171.

https://doi.org/10.1016/j.jhazmat.2008.07.141

Tobin, J.M., Cooper, D.G. & Neufeld, R. (1984) Uptake of Metal Ions by Rhizopusarrhizus Biomass. J. App. Environ. Microbiol. Vol.47, 821-824.

https://doi.org/10.1128/aem.47.4.821-824.1984

Lingamdinne, L.P., Roh, H., Choi, Y., Koduru, J.R., Yang, J. & Chang, Y. (2015) Influencing factors on sorption of TNT and RDX using rice husk biochar. J. Ind. Eng. Chem. Vol.32, 178-186.

https://doi.org/10.1016/j.jiec.2015.08.012

Han, W. & Bai, R.B. (2010) A novel method for obtaining a high concentration chitosan solution and preparing a high-strength chitosan hollow fiber membrane with an excellent adsorption capacity. J. of Appl. Poly. Sci. Vol.115, No.4, 1913-1921.

https://doi.org/10.1002/app.31167

Munagapati, V.S., Yarramuthi, V., Nadavala, S.K., Alla, S.R. & Abburi, K. (2010) Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics. Chem. Eng. J. Vol.157, 357-365.

https://doi.org/10.1016/j.cej.2009.11.015

Tamilselvan, N.A., Hemachandran, J., Thirumalai, T., Sharma, C.V. & Kannabiran, K. (2013) Biosorption of heavy metals from aqueous solution by Gracilariacorticatavar cartecala and Grateloupialithophila. J. of Coastal Life Med. Vol.1, No.2, 102-107.

Dawodu, F.A, Akpomie, G.K. & Ogbu, I.C. (2012) Isotherm Modeling on the Equilibrium Sorption of Cadmium (II) from Solution by Agbani Clay. Int. J. of multi. Sci. Eng. 3, 9.

Njikam, E. & Schiewer, S. (2012) Optimization and kinetic modeling of cadmium desorption from citrus peels: a process for biosorbent regeneration. J. Hazard Mater. 213-214, 242-248.

https://doi.org/10.1016/j.jhazmat.2012.01.084

Ringot, D., Lerzy, B., Chaplain, K., Bonhoure, J.P., Auclair, E. & Larondelle, Y. (2007) In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models. Bioresource Tech. Vol.98, No.9, 1812-1821.

https://doi.org/10.1016/j.biortech.2006.06.015

Sivakumar, P. & Palanisamy, P.N. (2009) Adsorption studies of basic red 29 by a non-conventional activated carbon prepared from euphorbia antiquorum. Int. J. Chem. Tech. Res. Vol.1, No.3, 502-510.

Gerente, C., Lee, P.V.K.C., Cloirec Le & McKay G. (2007) Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption-Mechanisms and Models Review. Critical Reviews in Environ. Sci. Tech. No.37, 41-127.

https://doi.org/10.1080/10643380600729089

Ho, Y.S., McKay, G., Wase, D.A.J. & Forster, C.F. (2000) Study of the sorption of divalent metal ions on to peat. Ads. Sci. Technol. Vol.18, 639-650.

https://doi.org/10.1260/0263617001493693

Prince, C., Isaac, J. & Sivakumar, A. (2013) Removal of lead and cadmium ions from water using Annonasquamosa shell: kinetic and equilibrium studies. Desal. and Water Treat. Vol.51, 7700-7709.

https://doi.org/10.1080/19443994.2013.778218

Downloads

Published

2020-10-30

How to Cite

Uddin, M. N., Monir Uddin, Ibrahim Khalil, Jahangir Alam, & A.K.M. Atique Ullah. (2020). Jute Stick Powder: A new approach to efficient biosorbent for the simultaneous removal of Pb, Cr and Cd from waste water. Journal of Applied Science &Amp; Process Engineering, 7(2), 611–630. https://doi.org/10.33736/jaspe.2641.2020