Phytoremediation of Palm Oil Mill Effluent (POME) Using Eichhornia crassipes

  • Ivy Tan Ai Wei Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia https://orcid.org/0000-0001-7320-2074
  • Nur Syakina Jamali Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia https://orcid.org/0000-0002-1756-6110
  • Winnie Huong Tien Ting Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia https://orcid.org/0000-0002-9126-8904
Keywords: Phytotechnology; Water hyacinth; Palm oil mill effluent (POME); Wastewater treatment

Abstract

It is inevitable that the manufacturing process of palm oil is accompanied by the generation of a massive amount of high strength wastewater, namely palm oil mill effluent (POME), which could pose serious threat to the aquatic environment. POME which contains high organic compounds originating from biodegradable materials causes water pollution if not properly managed. Palm oil industries are facing the challenges to make ends meet in the aspects of natural assurance, financial reasonability and development sustainability. It is therefore crucial to seek a practical solution to achieve the goal of environmental protection while continuing the economic sustainability. Phytoremediation has been proven as a potential method for removal or degradation of various hazardous contaminants. However, research on phytoremediation of POME using Eichhornia crassipes (E. crassipes) is still limited. This study aims to determine the feasibility of applying phytoremediation technique using E. crassipes for POME treatment. The effects of pH, plant:POME ratio and retention time on the biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solid (TSS) of POME were investigated. The highest BOD removal of 92.6% was achieved after 21 days retention time at pH 4 with plant:POME ratio of 1:20 kg/L. The highest COD removal of 20.7% was achieved after 14 days retention time at pH 6 with plant:POME ratio of 1:20 kg/L. Phytoremediation using E. crassipes was shown to be a promising eco-friendly technique for POME treatment, and is therefore recommended as a good alternative treatment solution for this industrial effluent.

References

Chukwunonso, O. I., Fauziah, S. H., Redzwan, G. (2014). The Utilization of Water Hyacinth (Eichhornia Crassipes) as Aquatic Macrophage Treatment System (AMATS) in Phytoremediation for Palm Oil Mill Effluent (POME), International Journal of Sciences: Basic and Applied Research, Vol. 13, 31-47.

Ding, G. T., Yaakob, Z., Takriff, M. S., Salihon, J., Abd Rahaman, M. S. (2016). Biomass Production and Nutrients Removal by a Newly-Isolated Microalgal Strain Chlamydomonas Sp in Palm Oil Mill Effluent (POME), International Journal of Hydrogen Energy, Vol. 41, 4888-4895.

https://doi.org/10.1016/j.ijhydene.2015.12.010

Bello, M. M. and Abdul Raman, A. A. (2017). Trend and Current Practices of Palm Oil Mill Effluent Polishing: Application of Advanced Oxidation Processes and Their Future Perspectives, Journal of Environmental Management, Vol. 198, 170-182.

https://doi.org/10.1016/j.jenvman.2017.04.050

Ahmad, A. L., Chan, C. Y., Shukor, S. R. A., Mashitah, M. D. (2010). Optimization of Carotene Recovery from Extracted Oil of POME by Adsorption Chromatography Using Response Surface Methodology, Separation and Purification Technology, Vol. 73, 279-285.

https://doi.org/10.1016/j.seppur.2010.04.014

Zinatizadeh, A. A. L., Mohamed, A. R., Mashitah, M. D., Abdullah, A. Z., Najafpour, G. D. (2006). Pretreated Palm Oil Mill Effluent (POME) Digestion in an Up-Flow Anaerobic Sludge Fixed Film Bioreactor: A Comparative Study, International Journal of Engineering: Transactions B (Applications), Vol. 19, 1-9.

Latif, A. I., Suzylawati, I., Norliza, I., Bhatia, S. (2003). Removal of Suspended Solids and Residual Oil from Palm Oil Mill Effluent, Journal of Chemical Technology and Biotechnology, Vol. 78, 971-978.

https://doi.org/10.1002/jctb.892

Nasrullah, M., Singh, L., Mohamad Z., Norsita, S., Krishnan, S., Wahida, N., Zularisam, A. W. (2017). Treatment of Palm Oil Mill Effluent by Electrocoagulation with Presence of Hydrogen Peroxide as Oxidizing Agent and Polialuminum Chloride as Coagulant-Aid, Water Resources and Industry, Vol. 17, 7- 10.

https://doi.org/10.1016/j.wri.2016.11.001

Ma, A. N. (2000). Environmental Management for the Palm Oil Industry, Palm Oil Developments, Vol. 30, 1-10.

Ng, K. H., Lee, C. H., Khan, M. R., Cheng, C. K. (2016). Photocatalytic Degradation of Recalcitrant POME Waste by Using Silver Doped Titania: Photokinetics and Scavenging Studies, Chemical Engineering Journal, Vol. 286, 282-290.

https://doi.org/10.1016/j.cej.2015.10.072

Schuchardt, F., Wulfert, K., Darnoko, D., Herawan, T. (2008). Effect of New Palm Oil Mill Processes on the EFB and POME Utilization, Journal of Oil Palm Research, Vol. Special Issue 2008, 115-126.

Wu, J., Ma, X. Z., Wang, Z. (2010). Provincial Emission Permits Quota Allocations in China, Quaternary Science, Vol. 30, No. 3, 481-488.

Tabassum, S., Zhang, Y., Zhang, Z. (2015). An Integrated Method for Palm Oil Mill Effluent (POME) Treatment for Achieving Zero Liquid Discharge - A Pilot Study, Journal of Cleaner Production, Vol. 95, 148-155.

https://doi.org/10.1016/j.jclepro.2015.02.056

Yuniarto, A., Noor, Z. Z., Ujang, Z., Olsson, G., Aris, A., Hadibarata, T. (2013). Bio-Fouling Reducers for Improving the Performance of an Aerobic Submerged Membrane Bioreactor Treating Palm Oil Mill Effluent, Desalination, Vol. 316, 146-153.

https://doi.org/10.1016/j.desal.2013.02.002

Chan, Y. J., Chong, M. F., Law, C. L. (2012). An Integrated Anaerobic-Aerobic Bioreactor (IAAB) for the Treatment of Palm Oil Mill Effluent (POME): Start-Up and Steady State Performance, Process Biochemistry, Vol. 47, No. 3, 485-495.

https://doi.org/10.1016/j.procbio.2011.12.005

Parthasarathy, S., Mohammed, R. R., Chong, M. F., Gomes, R. L., Manickam, S. (2016). A Novel Hybrid Approach of Activated Carbon and Ultrasound Cavitation for the Intensification of Palm Oil Mill Effluent (POME) Polishing, Journal of Cleaner Production, Vol. 112, 1218-1226.

https://doi.org/10.1016/j.jclepro.2015.05.125

Said, M., Hasan, H. A., Tusirin, M., Nor, M. (2016). Removal of COD, TSS and Colour from Palm Oil Mill Effluent (POME) Using Montmorillonite, Desalination and Water Treatment, Vol. 57, 10490-10497. Journal of Applied Science & Process Engineering Vol. 6, No. 1, 2019 e-ISSN: 2289-7771 352

https://doi.org/10.1080/19443994.2015.1036778

Ahmed, Y., Yaakob, Z., Akhtar, P., Sopian, K. (2015). Production Of Biogas And Performance Evaluation Of Existing Treatment Processes In Palm Oil Mill Effluent (POME), Renewable and Sustainable Energy Reviews, Vol. 42, 1260-1278.

https://doi.org/10.1016/j.rser.2014.10.073

Ho, K. C., Teow, Y. H., Ang, W. L., Mohammad, A. W. (2017). Novel GO/OMWCNTs Mixed-Matrix Membrane with Enhanced Antifouling Property for Palm Oil Mill Effluent Treatment, Separation and Purification Technology, Vol. 177, 337-349.

https://doi.org/10.1016/j.seppur.2017.01.014

Saeed, M. O., Azizli, K. A. M., Isa, M. H., Ezechi, E. H. (2016). Treatment of POME Using Fenton Oxidation Process: Removal Efficiency, Optimization, and Acidity Condition, Desalination and Water Treatment, Vol. 3994, 1-10.

McCutcheon, S. C. and Jorgensen, S. E. (2008). Phytoremediation, S. E. Jorgensen, B. Fath, (Eds.), Encyclopedia of Ecology, Elsevier Science BV, Amsterdam, Netherlands.

https://doi.org/10.1016/B978-0-444-63768-0.00069-X

Lettinga, G. (1995). Anaerobic Digestion and Wastewater Treatment Systems, Antonie van Leeuwenhoek, Vol. 67, 3-28.

https://doi.org/10.1007/BF00872193

Salt, D. E., Kato, N., Kramer, U., Smith, R. D., Raskin, I. (2000). The Role of Root Exudates in Nickel Hyperaccumulation and Tolerance in Accumulator and Non Accumulator Species of Thlaspi, N. Terry, G. Banuelos, (Eds.), Phytoremediation of Contaminated Soil and Water, CRS Press LLC, London.

https://doi.org/10.1201/9781439822654.ch10

Miretzky, P., Saralegui, A., Cirelli, A. F. (2004). Aquatic Macrophytes Potential for the Simultaneous Removal of Heavy Metals (Buenos Aires, Argentina), Chemosphere, Vol. 57, 997-1005.

https://doi.org/10.1016/j.chemosphere.2004.07.024

Environmental Protection Agency (EPA). (2001). A Citizen's Guide to Phytoremediation, EPA 542-F-01- 002.

Hanks, N. A., Caruso, J. A., Zhang, P. (2015). Assessing Pistia stratiotes for Phytoremediation of Silver Nanoparticles and Ag(I) Contaminated Waters, Journal of Environmental Management, Vol. 164, 41-45.

https://doi.org/10.1016/j.jenvman.2015.08.026

Lokhande, V. H., Kudale, S., Nikalje, G., Desai, N., Suprasanna, P. (2015). Hairy Root Induction and Phytoremediation of Textile Dye, Reactive Green 19A-HE4BD, in a Halophyte, Sesuvium portulacastrum (L.) L., Biotechnology Reports, Vol. 8, 56-63.

https://doi.org/10.1016/j.btre.2015.08.002

Rane, N. R., Chandanshive, V. V., Watharkar A. D., Khandare, R. V., Patil, T. S., Pawar, P. K., Govindwar, S. P. (2015). Phytoremediation of Sulfonated Remazol Red Dye and Textile Effluents by Alternanthera philoxeroides: An Anatomical, Enzymatic and Pilot Scale Study, Water Research, Vol. 83, 271-281.

https://doi.org/10.1016/j.watres.2015.06.046

Rezania, S., Ponraj, M., Talaiekhozani A., Mohamad, S. E., Md Din, M. F., Taib, S. M., Sabbagh, F., Md Sairan, F. (2015). Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater, Journal of Environmental Management, Vol. 163, 125- 133.

https://doi.org/10.1016/j.jenvman.2015.08.018

Ebel, M., Evangelou, M. W. H., Schaeffer, A. (2007). Cyanide Phytoremediation by Water Hyacinths (Eichhornia crassipes), Chemosphere, Vol. 66, No. 5, 816-823.

https://doi.org/10.1016/j.chemosphere.2006.06.041

Jayaweera, M. W., Kasturiarachchi, J. C., Kularatne, R. K. A., Wijeyekoon, S. L. J. (2008). Contribution of Water Hyacinth (Eichhornia crassipes (Mart.) Solms) Grown under Different Nutrient Conditions to Feremoval Mechanisms in Constructed Wetlands, Journal of Environmental Management, Vol. 87, No. 3, 450-460.

https://doi.org/10.1016/j.jenvman.2007.01.013

Gupta, A. and Balomajumder, C. (2015). Removal of Cr(VI) and Phenol Using Water Hyacinth from Single and Binary Solution in the Artificial Photosynthesis Chamber, Journal of Water Process Engineering, Vol. 7, 74-82.

https://doi.org/10.1016/j.jwpe.2015.05.008

Hadiyanto, H., Christwarda, M., Soetrisnanto, D. (2013). Phytoremediation of Palm Oil Mill Effluent (POME) by Aquatic Plants and Microalgae for Biomass Production, Journal of Environmental Science and Technology, Vol. 6, 79-90.

https://doi.org/10.3923/jest.2013.79.90

Darajeh, N., Idris, A., Masoumi, H. R. F., Nourani, A., Truong, P., Rezania, S. (2017). Phytoremediation of Palm Oil Mill Secondary Effluent (POMSE) by Chrysopogon zizanioides (L.) Using Artificial Neural Network, International Journal of Phytoremediation, Vol. 19, No. 5, 413-424. Journal of Applied Science & Process Engineering Vol. 6, No. 1, 2019 e-ISSN: 2289-7771 353

https://doi.org/10.1080/15226514.2016.1244159

Darajeh, N., Idris, A., Masoumi, H. R. F., Nourani, A., Truong, P., Sairi, N. A. (2016). Modeling BOD and COD Removal from Palm Oil Mill Secondary Effluent in Floating Wetland by Chrysopogon zizanioides (L.) Using Response Surface Methodology, Journal of Environmental Management, Vol. 181, 343-352.

https://doi.org/10.1016/j.jenvman.2016.06.060

Sa'at, S. K. M., Zaman, N. Q., Yusoff, S. M., Ismail, H. A. (2017). Investigation of the Potential of Cyperus alternifolius in the Phytoremediation of Palm oil Mill effluent., in Proceedings of the International Conference of Global Network for Innovative Technology and AWAM International Conference in Civil Engineering (IGNITE-AICCE'17), 040009-1-040009-7.

https://doi.org/10.1063/1.5005689

Kamyab, H., Chelliapan, S., Din M. F. M., Shahbazian-Yassar, R., Rezania, S. Hadiyanto, H., Soetrisnanto, D., Christwardhana, M. (2014). Phytoremediation of Palm Oil Mill effluent by Using Pistia stratiotes Plant and Algae Spirulina sp for Biomass Production, International Journal of Engineering: Transactions C (Aspects), Vol. 27, 1809-1814.

https://doi.org/10.5829/idosi.ije.2014.27.12c.02

Kumar, A. and Azimi, M. (2017). Evaluation of Lemna minor and Chlamydomonas to Treat Palm Oil Mill Effluent and Fertilizer Production, Journal of Water Process Engineering, Vol. 17, 229-236.

https://doi.org/10.1016/j.jwpe.2017.04.007

Farraji, H., Zaman, N. Q., Sa'at, S. K. M., Dashtia, A. F. (2017). Phytoremediation of Suspended Solids and Turbidity of Palm Oil Mill Effluent (POME) by Ipomea Aquatica, Engineering Heritage Journal, Vol. 1, No. 1, 36-40.

https://doi.org/10.26480/gwk.01.2017.36.40

Ng, Y. S. and Chan, D. J. C. (2017). Wastewater Phytoremediation by Salvinia molesta, Journal of Water Process Engineering, Vol. 15, 107-115.

https://doi.org/10.1016/j.jwpe.2016.08.006

Hamzah, M. F., Yusof, N., Alimon, H. (2016). Microbial Assisted Phytoremediation of Palm Oil Final Discharge (POMFD) Wastewater, Journal of Oil Palm Research, Vol. 28, 320-330.

https://doi.org/10.21894/jopr.2016.2803.08

John, C. K. (1984). Treatment of Agro-Industrial Wastes Using Water Hyacinth, Water Science and Technology, Vol. 17, 781-790.

https://doi.org/10.2166/wst.1985.0179

Center, T. D., Hill, M. P., Cordo, H., Julien, M. H. (2002). Water Hyacinth, R. G. van Driesche, S. Lyon, B. Blossey, M. S. Hoddle, R. Reardon (Eds.), Biological Control of Invasive Plants in the Eastern United States, Morgantown, WV: USDA Forest Service, 41-64.

American Public Health Association, American Water Works Association, and Water Environment Federation (APHA/AWWA/WEF). (1998). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C.

Azbar, N. and Yonar, T. (2004). Comparative Evaluation of a Laboratory and Full-Scale Treatment Alternatives for the Vegetable Oil Refining Industry Wastewater (VORW), Process Biochemistry, Vol. 39, 869-875.

https://doi.org/10.1016/S0032-9592(03)00193-6

Prego, R., Boi, P., GarcĂ­a, A. C. (2008). The Contribution of Total Suspended Solids to the Bay of Biscay by Cantabrian Rivers (northern coast of the Iberian Peninsula), Journal of Marine Systems, vol. 72, 342- 349.

https://doi.org/10.1016/j.jmarsys.2007.01.011

Shah, M., Hashmi, H. N., Ali, A., Ghumman, A. R. (2014). Performance Assessment of Aquatic Macrophytes for Treatment of Municipal Wastewater, Journal of Environmental Health Science and Engineering, Vol. 12, No. 1, 106.

https://doi.org/10.1186/2052-336X-12-106

Dinges, W. R. (1976). Who Says Sewage Treatment Plants Have to be Ugly?, Water Wastes Engineering, Vol. 13, 20-23.

Saeed, S. M. and Al-Nagaawy, A. M. A. (2013). Impact of Water Hyacinth (Eichhornia crassipes) on Physico-Chemical Properties of Water, Phytoplankton Biomass and Nile Tilapia Production in Earthen Ponds, Journal of the Arabian Aquaculure Society, Vol. 8, 249-262.

Wolverton, B. C., Barlow, R. M., Mcdonald, R. C. (1976). Application of Vascular Aquatic Plants for Pollution Removal, Energy and Food Production in a Biological System, J. Tourbier and Jr. R. W. Pierson, (Eds.), Biological Control of Water Pollution, Univ. Pennsylvania, 141-150.

https://doi.org/10.9783/9781512807967-018

Polprasert, C. and Khatiwada, N. R. (1998). An Integrated Kinetic Model for Water Hyacinth Ponds used for Wastewater Treatment, Water Research, Vol. 32, 179-185.

https://doi.org/10.1016/S0043-1354(97)00191-7

Published
2019-03-31
How to Cite
Tan Ai Wei, I., Jamali, N. S., & Ting, W. H. T. (2019). Phytoremediation of Palm Oil Mill Effluent (POME) Using Eichhornia crassipes. Journal of Applied Science & Process Engineering, 6(1), 340-354. https://doi.org/10.33736/jaspe.1349.2019