Probability of Corporate Bankruptcy: Application to Portuguese Manufacturing Industry SMEs

Authors

  • Luís Pacheco Research on Economics, Management and Information Technologies (REMIT), Universidade Portucalense - Infante D. Henrique, Portugal
  • Mara Madaleno Unidade de Investigação em Governança, Competitividade e Políticas Públicas (GOVCOPP) Departamento de Economia, Gestão, Engenharia Industrial e Turismo, Universidade de Aveiro, Portugal
  • Pedro Correia Departamento de Economia, Gestão, Engenharia Industrial e Turismo (DEGEIT), Universidade de Aveiro, Portugal
  • Isabel Maldonado Research on Economics, Management and Information Technologies (REMIT), Universidade Portucalense - Infante D. Henrique, Portugal Unidade de Investigação em Governança, Competitividade e Políticas Públicas (GOVCOPP)

DOI:

https://doi.org/10.33736/ijbs.4863.2022

Keywords:

Bankruptcy, manufacturing industry, SMEs, logit, financial ratios

Abstract

This paper aims to develop a model for predicting corporate bankruptcy for SMEs in the Portuguese manufacturing industry where this question remains rather unaddressed. Using profitability, activity, liquidity, leverage, and solvency ratios, it was added the size and age variables, for a group of 208 firms, including 49 bankrupt firms and 159 active firms, during the years 2011 to 2015. The logit model allowed us to estimate a model with 82.3% of predictive capacity. The most important variables identified were profitability, solvency, and size. Estimations only with the data closest to the bankruptcy date improved predictive capacity. It is evidenced that financial and non-financial variables can predict bankruptcy probability. A possible future approach would be to analyze a larger sample. Also, a larger period could be considered, allowing to test either the effects of the 2007/8 crisis or the effects of the recent economic turmoil related to Covid-19. Important for both corporate managers and investors. Conclusions may be disclosed regarding the influence that economic turmoil certainly has on corporate defaults and bankruptcies allowing its extension to other countries. The contribution of this paper is to find the best specification for a bankruptcy prediction model applied to the Portuguese manufacturing industry SMEs. This paper also contributes to the existing literature by using non-financial variables and analyzing a sector still unexplored in Portugal, albeit its conclusions can be extended to other countries.

References

Abidin, J. Z., Abdullah, N. A. H., & Khaw, K. (2021). Predicting business failure for Malaysia SMEs in the hospitality industry. Advances in Economics, Business and Management Research, 161, 67-73. https://doi.org/10.2991/aebmr.k.210121.011

Agarwal, V., & Taffler, R. (2008). Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking and Finance, 32(8), 1541-1551. https://doi.org/10.1016/j.jbankfin.2007.07.014

Agrawal, K., & Maheshwari, Y. (2019). Efficacy of industry factors for corporate default prediction. IIMB Management Review, 31(1), 71-77. https://doi.org/10.1016/j.iimb.2018.08.007

Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Bilal, M., Ajayi, S. O., & Akinade, O. O. (2020). A framework for big data analytics approach to failure prediction of construction firms. Applied Computing and Informatics, 16(1/2), 207-222. https://doi.org/10.1016/j.aci.2018.04.003

Almamy, J., Aston, J., & Ngwa, L. N. (2016). An evaluation of Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK. Journal of Corporate Finance, 36, 278-285. https://doi.org/10.1016/j.jcorpfin.2015.12.009

Almansour, B. Y. (2015). Empirical model for predicting financial failure. American Journal of Economics, Finance and Management, 1(3), 113-124.

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x

Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress and bankruptcy (3rd ed.). John Wiley and Sons Inc. https://doi.org/10.1002/9781118267806

Altman, E. I., & Sabato, G. (2007). Modelling credit risk for SMEs: Evidence from the U.S. market. Abacus, 43(3), 332-357. https://doi.org/10.1111/j.1467-6281.2007.00234.x

Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETA analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 1, 29-54. https://doi.org/10.1016/0378-4266(77)90017-6

Altman, E. I., Iwanicz‐Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman's Z‐Score Model. Journal of International Financial Management and Accounting, 28(2), 131-171. https://doi.org/10.1111/jifm.12053

Antunes, A. R., Prego, P., & Gonçalves, H. (2016). Firm default probabilities revisited. Economic Bulletin and Financial Stability Report Articles, 21-45.

Appiah, K. O. (2011). Predicting corporate failure and global financial crisis: Theory and implications. Journal of Modern Accounting and Auditing, 7(1), 38-47.

Araghi, M. K., & Makvandi, S. (2013). Comparing logit, probit and multiple discriminant analysis models in predicting bankruptcy of companies. Asian Journal of Finance and Accounting, 5(1), 48-60. https://doi.org/10.5296/ajfa.v5i1.2977

Arasti, Z. (2011). An empirical study on the causes of business failure in Iranian context. African Journal of Business Management, 5(17), 7488-7498. https://doi.org/10.5897/AJBM11.402

Aziz, M., & Dar, H. (2006). Predicting corporate bankruptcy: Where we stand? Corporate Governance, 6, 18-33.

https://doi.org/10.1108/14720700610649436

Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93. https://doi.org/10.1016/j.bar.2005.09.001

Bărbuță-Mișu, N., & Madaleno, M. (2020). Assessment of bankruptcy risk of large companies: European countries evolution analysis. Journal of Risk and Financial Management, 13(3), 58. https://doi.org/10.3390/jrfm13030058

Bartual, C., Garcia, F., Guijarro, F., & Moya, I. (2013). Default prediction of Spanish companies: A logistic analysis. Intellectual Economics, 7(3), 333-343. https://doi.org/10.13165/IE-13-7-3-05

Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111. https://doi.org/10.2307/2490171

Beaver, W. H. (2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting Studies, 10, 93-122. https://doi.org/10.1007/s11142-004-6341-9

Blum, M. (1974). The failing company doctrine. Boston College Industrial and Commercial Law Review, 16(1), 75-113.

Bonfim, D., (2009). Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics. Journal of Banking and Finance, 33(2), 281-299. https://doi.org/10.1016/j.jbankfin.2008.08.006

Boso, N., Adeleye, I., Donbesuur, F., & Gyensare, M. (2019). Do entrepreneurs always benefit from business failure experience? Journal of Business Research, 98, 370-379. https://doi.org/10.1016/j.jbusres.2018.01.063

Buis, M. L. (2012). Stata tip 107: The baseline is now reported. The Stata Journal, 12(1), 165-166. https://doi.org/10.1177/1536867X1201200112

Charitou, A., Neophytou, E., & Charalambous, C. (2004). Predicting corporate failure: Empirical evidence for the UK. European Accounting Review, 13(3), 465-497. https://doi.org/10.1080/0963818042000216811

Coats, P. K., & Fant, L. F. (1993). Recognizing financial distress patterns using a neural network tool. Financial Management, 22(3), 142-155. https://doi.org/10.2307/3665934

Costa, H. A. (2014). Modelo de previsão de falência: O caso da construção civil em Portugal [Bankruptcy prediction model: The case of civil construction in Portugal] [Unpublished master's thesis]. Universidade do Algarve.

Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167-179. https://doi.org/10.2307/2490225

Diez, F. J., Duval, R., Fan, J., Garrido, J., Kalemli-Ozcan, S., Maggi, C., ... & Pierri, N. (2021). Insolvency Prospects Among Small-and-Medium-Sized Enterprises in Advanced Economies: Assessment and Policy Options (International Monetary Fund Staff Discussion Notes No. SDN/2021/002). https://www.imf.org/-/media/Files/Publications/SDN/2021/English/SDNEA2021002.ashx https://doi.org/10.5089/9781513574561.006

Dong, M. C., Tian, S., & Chen, C. W. S. (2018). Predicting failure risk using financial ratios: Quantile hazard model approach. The North American Journal of Economics and Finance, 44, 204-220. https://doi.org/10.1016/j.najef.2018.01.005

du Jardin, P., Veganzones, D., & Séverin, E. (2019). Forecasting corporate bankruptcy using accrual-based models. Computational Economics, 54(1), 7-43. https://doi.org/10.1007/s10614-017-9681-9

European Commission (2018). 2017 SBA fact sheet for Portugal. https://ec.europa.eu/docsroom/documents/26562/attachments/23/translations/en/renditions/pdf

Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of Finance, 47(2), 427-465. https://doi.org/10.1111/j.1540-6261.1992.tb04398.x

García, V., Marqués, A. I., Sánchez, J. S., & Ochoa-Domínguez, H. J. (2019). Dissimilarity-based linear models for corporate bankruptcy prediction. Computational Economics, 53(3), 1019-1031. https://doi.org/10.1007/s10614-017-9783-4

Hazak, A., & Männasoo, K. (2007). Indicators of corporate default - An EU based empirical study (Bank of Estonia Working Paper 10/2007). https://haldus.eestipank.ee/sites/default/files/publication/en/WorkingPapers/2007/_wp_1007.pdf

Instituto Nacional de Estadística (2017). Empresas em Portugal - 2015 [Enterprises in Portugal - 2015] (Data file). https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE

Jacobson, T., Lindé, J., & Roszbach, K. (2013). Firm default and aggregate fluctuations. Journal of the European Economic Association, 11(4), 945-972. https://doi.org/10.1111/jeea.12020

Jahur, M. S., & Quadir, S. M. N. (2012). Financial distress in small and medium enterprises (SMEs) of Bangladesh: Determinants and remedial measures. Economia: Seria Management, 15(1), 46-61.

Jardim, C. P., & Pereira, E. T. (2013). Corporate bankruptcy of Portuguese firms. Zagreb International Review of Economics and Business, 16(2), 39-56.

Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196-208. https://doi.org/10.1016/j.irfa.2017.08.009

Jones, S., Johnstone, D., & Wilson, R. (2017). Predicting corporate bankruptcy: An evaluation of alternative statistical frameworks. Journal of Business Finance and Accounting, 44(1-2), 3-34. https://doi.org/10.1111/jbfa.12218

Karels, G. V., & Prakash, A. J. (1987). Multivariate normality and forecasting of business bankruptcy. Journal of Business Finance and Accounting, 14(4), 573-593. https://doi.org/10.1111/j.1468-5957.1987.tb00113.x

Kenney, R., La Cava, G., & Rodgers, D. (2016). Why do companies fail? (Reserve Bank of Australia Working Papers No. 2016-09). https://www.rba.gov.au/publications/rdp/2016/pdf/rdp2016-09.pdf

Kim, H., & Gu, Z. (2006). A logistic regression analysis for predicting bankruptcy in the hospitality industry. The Journal of Hospitality Financial Management, 14(1), 17-34. https://doi.org/10.1080/10913211.2006.10653812

Kovacova, M., Kliestik, T., Kubala, P., Valaskova, K., Radišić, M., & Borocki, J. (2018). Bankruptcy models: Verifying their validity as a predictor of corporate failure. Polish Journal of Management Studies, 18(1), 167-179. https://doi.org/10.17512/pjms.2018.18.1.13

Laitinen, E. K. (1994). Traditional versus operating cash flow in failure prediction. Journal of Business Finance and Accounting, 21(2), 195-217. https://doi.org/10.1111/j.1468-5957.1994.tb00313.x

Lakshan, A. I., & Wijekoon, W. M. H. N. (2013). The use of financial ratios in predicting corporate failure in Sri Lanka. GSTF Journal on Business Review, 2(4), 37-43.

Le, H. H., & Viviani, J. L. (2018). Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios. Research in International Business and Finance, 44, 16-25. https://doi.org/10.1016/j.ribaf.2017.07.104

Levratto, N. (2013). From failure to corporate bankruptcy: A review. Journal of Innovation and Entrepreneurship, 2(20), 1-15. https://doi.org/10.1186/2192-5372-2-20

Lins, K.V., Servaes, H., & Tamayo, A. (2017). Social capital, trust, and firm performance: The value of corporate social responsibility during the financial crisis. The Journal of Finance, 74(4), 1785- 1824. https://doi.org/10.1111/jofi.12505

Lopes, J. P. (2014). Previsão de falência de pequenas e médias empresas [Unpublished master's thesis]. Universidade do Porto (Portugal).

Lukason, O. (2013). Firm bankruptcies and violations of law: An analysis of different offences. In T. Vissak, & M. Vadi (Eds.), (Dis)honesty in management (Advanced series in management, Vol. 10, pp. 127-146). Emerald Group Publishing Limited. https://doi.org/10.1108/S1877-6361(2013)0000010010

Lukason, O., & Laitinen, E. K. (2018). Firm failure processes and components of failure risk: An analysis of European bankrupt firms. Journal of Business Research, 98, 380-390. https://doi.org/10.1016/j.jbusres.2018.06.025

McKee, T. E. (2003). Rough sets bankruptcy prediction models versus auditor signalling rates. Journal of Forecasting, 22(8), 569-586. https://doi.org/10.1002/for.875

Nanayakkara, K. G. M., & Azeez, A. A. (2015). Predicting corporate financial distress in Sri Lanka: An extension to z-score model. International Journal of Business and Social Research, 5(3), 41-56. https://doi.org/10.4038/kjm.v3i1.7474

Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131. https://doi.org/10.2307/2490395

Oliveira, M. P. G. (2014). A insolvência empresarial na indústria transformadora portuguesa: as determinantes financeiras e macroeconómicas [Corporate insolvency in the Portuguese manufacturing industry: Financial and macroeconomic determinants] [Unpublished master's thesis]. Universidade do Porto.

Ooghe, H. Spaenjers, C., & Vandermoere, P. (2009). Business failure prediction: Simple-intuitive models versus statistical models. The IUP Journal of Business Strategy, 6(3/4), 7-44.

Ooghe, H., & De Prijcker, S. (2008). Failure processes and causes of company bankruptcy: A typology. Management Decision, 46(2), 223-242. https://doi.org/10.1108/00251740810854131

Pacheco L., Rosa, R., & Tavares, F. (2019). Risco de falência de PME: Evidência no setor da construção em Portugal [Bankruptcy risk of SMEs: Evidence from the construction sector in Portugal]. Revista Innovar, 29(71), 143-157. https://doi.org/10.15446/innovar.v29n71.76401

Pacheco, L. (2015). SMEs probability of default: The case of the hospitality sector. Tourism and Management Studies, 11(1), 153-159.

Paolone, F., & Kesgin, S. S. (2016). Insolvency prediction in manufacturing firms. A comparative study between Italy and Turkey. International Journal of Technical Research and Applications, 4(1), 200-211.

Pervan, I., Pervan, M., & Vukoja, B. (2011). Prediction of company bankruptcy using statistical techniques - Case of Croatia. Croatian Operational Research Review, 2, 158-167.

Platt, H. D., & Platt, M. B. (1990). Development of a class of stable predictive variables: The case of bankruptcy prediction. Journal of Business Finance and Accounting, 17(1), 31-51. https://doi.org/10.1111/j.1468-5957.1990.tb00548.x

Platt, H. D., & Platt, M. B. (2002). Predicting corporate financial distress: Reflection on choice-based sample bias. Journal of Economic and Finance, 26(2), 184-199. https://doi.org/10.1007/BF02755985

Pordata (2017). Pordata - Empresas no sector da indústria transformadora: Total e por tipo [Pordata - Companies in the manufacturing sector: Total and by type] [Data set]. https://www.pordata.pt/Portugal/Empresas+no+sector+da+ind%C3%BAstria+transformadora+total+e+por+tipo-2955.

Pordata (2018). Pordata - Empresas [Data set]. https://www.pordata.pt/en/Portugal/Birth++death+and+survival+rates+of+enterprises-2883

Serrano-Cinca, C., Gutiérrez-Nieto, B., & Bernate-Valbuena, M. (2019). The use of accounting anomalies indicators to predict business failure. European Management Journal, 37(3), 353-375. https://doi.org/10.1016/j.emj.2018.10.006

Singh, B. P., & Mishra, A. K. (2016). Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies. Financial Innovation, 2(6), 1-28. https://doi.org/10.1186/s40854-016-0026-9

Situm, M. (2014). The age and size of the firm as relevant predictors for bankruptcy. Journal of Applied Economics and Business, 2(1), 5-30.

Situm, M. (2015). Analysis of correlational behavior of solvent and insolvent firms based on accounting ratios. Journal of Modern Accounting and Auditing, 11(5), 233-259. https://doi.org/10.17265/1548-6583/2015.05.001

Switzer, L. N., Tu, Q., & Wang, J. (2018). Corporate governance and default risk in financial firms over the post-financial crisis period: International evidence. Journal of International Financial Markets, Institutions and Money, 52(C), 196-210. https://doi.org/10.1016/j.intfin.2017.09.023

Taffler, R. J. (1982). Forecasting company failure in the UK using discriminant analysis and financial ratio data. Journal of the Royal Statistical Society, 145(3), 342-358. https://doi.org/10.2307/2981867

Tian, S., & Yu, Y. (2017). Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics and Finance, 51, 510-526. https://doi.org/10.1016/j.iref.2017.07.025

Tong, Y., & Serrasqueiro, Z. (2021). Predictions of failure and financial distress: A study on Portuguese high and medium-high technology small and mid-sized enterprises. Journal of International Studies, 14(2), 9-25. https://doi.org/10.14254/2071-8330.2021/14-2/1

Whitaker, R. B. (1999). The early stages of financial distress. Journal of Economics and Finance, 23(2), 123-133. https://doi.org/10.1007/BF02745946

Yuan, M., Tang, C. Y., Hong, Y., & Yang, J. (2018). Disentangling and assessing uncertainties in multiperiod corporate default risk predictions. The Annals of Applied Statistics, 12(4), 2587-2617. https://doi.org/10.1214/18-AOAS1170

Zavgren, C. V. (1985). Assessing the vulnerability to failure of American industrial firms: A logistic analysis. Journal of Business Finance and Accounting, 12(1), 19-45. https://doi.org/10.1111/j.1468-5957.1985.tb00077.x

Zeitun, R., Tian, G., & Keen, S. (2007). Default probability for the Jordanian companies: A test of cash flow theory. International Research Journal of Finance and Economics, 8, 147-162.

Zeytinoglu, E., & Akarim, Y. D. (2013). Financial failure prediction using financial ratios: An empirical application on Istanbul stock exchange. Journal of Applied Finance and Banking, 3(3), 107-116.

Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82. https://doi.org/10.2307/2490859

Downloads

Published

2022-08-08

How to Cite

Luís Pacheco, Mara Madaleno, Pedro Correia, & Isabel Maldonado. (2022). Probability of Corporate Bankruptcy: Application to Portuguese Manufacturing Industry SMEs . International Journal of Business and Society, 23(2), 1169–1189. https://doi.org/10.33736/ijbs.4863.2022