Comparison of Control Algorithms Using a Generalized Model for a Human with an Exoskeleton

  • Antonio Concha Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima, Colima https://orcid.org/0000-0001-9005-3584
  • Francisco Emmanuel González-Sánchez Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Torreón, Mexico
  • Efrain Ramírez-Velasco Departamento de Eléctrica-Electrónica, Instituto Tecnológico de Aguascalientes, Mexico
  • Martín Sánchez Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Torreón, Mexico
  • Suresh Kumar Gadi Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Coahuila, Torreón, Mexico
Keywords: Force augmenting device, exoskeletons, Human-Robot Interaction, closed-loop control.

Abstract

This article presents a pictorial representation of a generalized model for a human interacting with an exoskeleton or a force-augmenting device. This model is used for comparing four different control schemes, which are: 1) Kazerooni's algorithm, 2) BLEEX’s algorithm, 3) technique inspired by fictitious gain, and 4) Force control with velocity and position feedback. The hardware and software requirements for the presented control algorithms are also discussed.

References

Nagarajan, U., Aguirre-Ollinger, G., and Goswami, A. (2016). Integral admittance shaping: A unified framework for active exoskeleton control, Rob. Auton. Syst., Vol. 75, 310-324.

https://doi.org/10.1016/j.robot.2015.09.015

Gopura, R. A. R. C., Bandara, D. S. V., Kiguchi, K. and Mann, G. K. I. (2016) "Developments in hardware systems of active upper-limb exoskeleton robots: A review," Rob. Auton. Syst., Vol. 75, 203-220.

https://doi.org/10.1016/j.robot.2015.10.001

Manns, P. Sreenivasa, M. Millard, M. and Mombaur,K. (2017). Motion Optimization and Parameter Identification for a Human and Lower Back Exoskeleton Model, IEEE Robot. Autom. Lett., Vol. 2, No. 3, 1564-1570.

https://doi.org/10.1109/LRA.2017.2676355

Dellon, B. and Matsuoka, Y. (2007). Prosthetics, Exoskeletons, and Rehabilitation [Grand Challenges of Robotics]," IEEE Robot. Autom. Mag., vol. 14, no. 1, pp. 30-34, Mar. 2007.

https://doi.org/10.1109/MRA.2007.339622

Makinson, J. B., Bodine, D. P., & Fick, B. R. (1969). Machine augmentation of human strength and endurance Hardiman I prototype project (No. S-69-1116). General Electric Co Schenectady NY Specialty Materials Handling Products Operation.

Jansen, J., Richardson, B, Pin, F., Lind, R., and Birdwell, J. (2000). Exoskeleton for Soldier Enhancement Systems Feasibility Study, Oak Ridge, Tennessee 37831.

https://doi.org/10.2172/885757

Schiele, A. and Visentin, G. (2008). Exoskeleton for the Human Arm, in Particular for Space Applications, United States Pat. 7410338B.

Guizzo E., and Goldstein, H. (2005). The Rise of the Body Bots [robotic exoskeletons]," IEEE Spectr., vol. 42, no. 10, pp. 50-56, 2005.

https://doi.org/10.1109/MSPEC.2005.1515961

Lee, S. and Sankai,Y. (2002). Power Assist Control For Leg With Hal-3 Based on Virtual Torque and Impedance Adjustment, Systems, Man and Cybernetics, IEEE International Conference on, Vol. 4.

Schweighofer, N. Arbib, M. A. and Kawato, M. (1998). Role of the Cerebellum in Reaching Movements in Humans. I. Distributed Inverse Dynamics Control, Eur. J. Neurosci., Vol. 10, No. 1, 86-94.

https://doi.org/10.1046/j.1460-9568.1998.00006.x

Shaikh, A. G., Meng,H. and Angelaki, D. E. (2004). Multiple Reference Frames for Motion in the Primate Cerebellum," J. Neurosci., Vol. 24, No. 19, 4491-4497.

https://doi.org/10.1523/JNEUROSCI.0109-04.2004

Bastian, A.J., Martin, T.A., Keating, J.G. and Thach, W.T. (1996). Cerebellar Ataxia: Abnormal Control of Interaction Torques Across Multiple Joints, J. Neurophysiol., Vol. 76, No. 1, 492-509.

https://doi.org/10.1152/jn.1996.76.1.492

McIntyre, J. and Bizzi, E. (1993). Servo Hypotheses for the Biological Control of Movement, J. Mot. Behav., Vol. 25, No. 3, 193-202.

https://doi.org/10.1080/00222895.1993.9942049

Randall F.J and Ostry,D. (1990). Trajectories of Human Multi-Joint Arm Movements: Evidence of Joint Level Planning, Experimental Robotics I, 594-613.

He, W., Ge, S. S., Li, Y., Chew, E., and Ng, Y. S. (2015). Neural Network Control of a Rehabilitation Robot by State and Output Feedback. Journal of Intelligent & Robotic Systems, Vol. 80, No.1, 15-31.

https://doi.org/10.1007/s10846-014-0150-6

Kazerooni, H. (1988). Human Machine Interaction via the Transfer of Power and Information Signals, ASME Winter Annu. Meet.

Kazerooni, H., Racine, J.L., Huang, L. and Steger, R. (2005). On the control of the berkeley lower extremity exoskeleton (BLEEX), Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005., 4353-4360.

Kazerooni, H. and Steger, R. (2006). The Berkeley Lower Extremity Exoskeleton, J. Dyn. Syst. Meas. Control, Vol. 128, No. 1, 14-25.

https://doi.org/10.1115/1.2168164

Kong, K. and Tomizuka, M.(2009). Control of Exoskeletons Inspired by Fictitious Gain in Human Model, IEEE/ASME Trans. Mechatronics, Vol. 14, No. 6, 689-698.

https://doi.org/10.1109/TMECH.2009.2032685

Gadi, S. K., Osorio-Cordero, A., Lozano-Leal, R. and Garrido, R. A.(2017). Stability Analysis of a Human Arm Interacting with a Force Augmenting Device, J. Intell. Robot. Syst. Theory Appl., Vol. 86, No. 2, 215- 224.

https://doi.org/10.1007/s10846-016-0420-6

Published
2018-03-31
How to Cite
Concha, A., González-Sánchez, F. E., Ramírez-Velasco, E., Sánchez, M., & Gadi, S. K. (2018). Comparison of Control Algorithms Using a Generalized Model for a Human with an Exoskeleton. Journal of Applied Science & Process Engineering, 5(1), 249-255. https://doi.org/10.33736/jaspe.408.2018