Overview on the Response Surface Methodology (RSM) in Extraction Processes

  • Khairul Anwar Mohamad Said
  • Mohamed Afizal Mohamed Amin
Keywords: RSM, response surface methodology, box-behnken, central composite design, regression.


Response Surface Methodology (RSM) is an optimization tool that can identify interrelationship between variables as being adopted by experiment/ research studies in food and herbal plants extraction niche area. This review discusses the optimization approach through utilization of research surface methodology either using central composite design or Box-Behnken method specifically in extraction processes. The use of analysis of variance (ANOVA) to evaluate the degree of accuracy held by the derived model is based on several responses. RSM helps to determine the best experimental design in order to identify the relationship between variables. This paper also discusses on the utilization of RSM to derive a model equation that later can be applied for response prediction and the determination of optimal conditions.


R.G. Henika, Use of response surface methodology in sensory evaluation, Food Technol. 36 (1982) 96–101.

R.G. Henika, Simple and effective system for use with response surface methodology, Cereal Sci. Today. 17(10) (1972) 309–314, 334.

M. Giovanni, Response surface methodology and product optimization, Food Technol. 37(Nov) (1983).

B.T. Meilgaard, M., Civille, G. V., & Carr, Sensory evaluation techniques, 2nd ed., CRC Press, Boca Raton, FL, 1991.

A.V.A. Resurreccion, Quantitative of quality attributes as perceived by the consumer. In Consumer sensory testing for product development, Aspen Publishers, Inc., Gaithersburg, MD, 1998.

K.G. Box, G. E. P. & Wilson, On the experimental attainment of optimum conditions, J. R. Stat. Soc. 13 (1951) 1–45.

C.-H. Tan, H.M. Ghazali, A. Kuntom, C.-P. Tan, A.A. Ariffin, Extraction and physicochemical properties of low free fatty acid crude palm oil, Food Chem. 113 (2009) 645–650. doi:10.1016/j.foodchem.2008.07.052.

H. in H.J.H.M.& D.M.H.T. Moskowaitz, Product optimization approaches and applications., in: Meas. Food Prefer. I, Eds., Blackie Academie & Professional, Glasgow, UK, 1994: pp. pp. 97–136.

H.G. Schutz, Multiple regression approach to optimization, Food Technol. 37 (1983) 46–48, 62.

I. Elksibi, W. Haddar, M. Ben Ticha, R. Gharbi, M.F. Mhenni, Development and optimisation of a non conventional extraction process of natural dye from olive solid waste using response surface methodology (RSM)., Food Chem. 161 (2014) 345–52. doi:10.1016/j.foodchem.2014.03.108.

H. Wang, Y. Liu, S. Wei, Z. Yan, Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn., Food Chem. 132 (2012) 582–587. doi:10.1016/j.foodchem.2011.10.075.

W. Huang, Z. Li, H. Niu, D. Li, J. Zhang, Optimization of operating parameters for supercritical carbon dioxide extraction of lycopene by response surface methodology, J. Food Eng. 89 (2008) 298–302. doi:10.1016/j.jfoodeng.2008.05.006.

H. Ölmez, M.Y. Akbas, Optimization of ozone treatment of fresh-cut green leaf lettuce, J. Food Eng. 90 (2009) 487–494. doi:10.1016/j.jfoodeng.2008.07.026.

D. Rico, A.B. Martín-Diana, C. Barry-Ryan, J.M. Frías, G.T.M. Henehan, J.M. Barat, Optimisation of steamer jet-injection to extend the shelflife of fresh-cut lettuce, Postharvest Biol. Technol. 48 (2008) 431–442. doi:10.1016/j.postharvbio.2007.09.013.

P.C. Dhandhukia, V.R. Thakkar, Response surface methodology to optimize the nutritional parameters for enhanced production of jasmonic acid by Lasiodiplodia theobromae., J. Appl. Microbiol. 105 (2008) 636–43. doi:10.1111/j.1365-2672.2008.03803.x.

X. Liu, T. Mu, H. Sun, M. Zhang, J. Chen, Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology., Food Chem. 141 (2013) 3034–41. doi:10.1016/j.foodchem.2013.05.119.

S. Şahin, C. Demir, H. Malyer, Determination of total phenolic content of Prunella L. by immobilized enzyme bioreactor, Anal. Methods. 3 (2011) 944. doi:10.1039/c0ay00732c.

Y. Sun, J. Liu, J.F. Kennedy, Application of response surface methodology for optimization of polysaccharides production parameters from the roots of Codonopsis pilosula by a central composite design, Carbohydr. Polym. 80 (2010) 949–953. doi:10.1016/j.carbpol.2010.01.011.

H. Teng, Y.H. Choi, Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology., Food Chem. 142 (2014) 299–305. doi:10.1016/j.foodchem.2013.06.136.

J. Prakash Maran, S. Manikandan, C. Vigna Nivetha, R. Dinesh, Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design, Arab. J. Chem. (2013). doi:10.1016/j.arabjc.2013.02.007.

M. Yolmeh, M.B. Habibi Najafi, R. Farhoosh, Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM)., Food Chem. 155 (2014) 319–24. doi:10.1016/j.foodchem.2014.01.059.

J. Prakash Maran, S. Manikandan, K. Thirugnanasambandham, C. Vigna Nivetha, R. Dinesh, Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide., Carbohydr. Polym. 92 (2013) 604–11. doi:10.1016/j.carbpol.2012.09.020.

G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for experimenters, Wiley, New York, 1997.

H.S. Ferreira, A.C.N. Santos, L.A. Portugal, A.C.S. Costa, M. Miró, S.L.C. Ferreira, Pre-concentration procedure for determination of copper and zinc in food samples by sequential multi-element flame atomic absorption spectrometry., Talanta. 77 (2008) 73–6. doi:10.1016/j.talanta.2008.05.056.

D.C. Montgomery, Design and analysis of experiments, 4th ed., Wiley, New York, 1997.

E. Hamed, A. Sakr, Application of multiple response optimization technique to extended release formulations design, J. Control. Release. 73 (2001) 329–338. doi:10.1016/S0168-3659(01)00356-X.

M. Roosta, M. Ghaedi, A. Daneshfar, Optimisation of ultrasound-assisted reverse micelles dispersive liquid-liquid micro-extraction by Box-Behnken design for determination of acetoin in butter followed by high performance liquid chromatography., Food Chem. 161 (2014) 120–6. doi:10.1016/j.foodchem.2014.03.043.

M. Khajeh, Response surface modelling of lead pre-concentration from food samples by miniaturised homogenous liquid–liquid solvent extraction: Box–Behnken design, Food Chem. 129 (2011) 1832–1838. doi:10.1016/j.foodchem.2011.05.123.

Ö. Aybastıer, E. Işık, S. Şahin, C. Demir, Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology, Ind. Crops Prod. 44 (2013) 558–565. doi:10.1016/j.indcrop.2012.09.022.

Y. Tian, Z. Xu, B. Zheng, Y. Martin Lo, Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil., Ultrason. Sonochem. 20 (2013) 202–8. doi:10.1016/j.ultsonch.2012.07.010.