Designing and Analysis of the TCA Parameters of a Bevel Gear Having Circular Tooth Direction in the Function of the Moment

Authors

DOI:

https://doi.org/10.33736/jaspe.1234.2019

Keywords:

Gleason, moment, bevel gear, TCA, CAD

Abstract

The aim of this publication is the designing and the CAD modelling of the Gleason – type bevel gear pair and the analysis of the connecting teeth in case of different load moments. The main properties of this gear pair are the changing whole depth along the face width and the circular tooth direction which is created by a complicated cutting tool. Cutting edges are situated along the perimeter of the middle circle by equal circular pitches on the cutting tool. After the creation of the CAD model, which could be created by numerical way, TCA could be done in the function of the moment changing. The normal stress, normal elastic strain and normal deformation will be analyzed on the surface of the driven gear perpendicularly for the tooth surface. Knowing of the results correlations will be visualized based on the TCA results and the load moments. The behavior of the contact teeth will be analyzed.

References

Argyris, J., Fuentes, A., & Litvin, F. L. (2002). Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears. Computer Methods in Applied Mechanics and Engineering, Vol. 191 No.11-12, 1057-1095.

https://doi.org/10.1016/S0045-7825(01)00316-4

Dudás, I. (2011). Gépgyártástechnológia III., A. Megmunkáló eljárások és szerszámaik, B. Fogazott alkatrészek gyártása és szerszámaik. Műszaki Kiadó

Dudás, L. (1991). Kapcsolódó felületpárok gyártásgeometriai feladatainak megoldása az elérés modell alapján. Kandidátusi Tézisek, Budapest, TMB, 144.

Dudley, D. W. Gear Handbook,(1962). McGraw-Hill Book Company

Erney,Gy. (1983). Fogaskerekek. Műszaki Könyvkiadó, Budapest, 460.

Fuentes, A., Iserte, J. L., Gonzalez-Perez, I., & Sanchez-Marin, F. T. (2011). Computerized design of advanced straight and skew bevel gears produced by precision forging. Computer Methods in Applied Mechanics and Engineering, Vol. 200, No.29-32, 2363-2377

https://doi.org/10.1016/j.cma.2011.04.006

Gupta, K., Jain, N. K., & Laubscher, R. (2017). Advanced gear manufacturing and finishing: classical and modern processes. Academic Press

https://doi.org/10.1016/B978-0-12-804460-5.00004-3

Héberger, K., Iliász, D., Rezek, Ö., Tóth, I. (1981): A Gépgyártás Technológiája, Iii. Tömeggyártás, Negyedik Kiadás, Tankönyvkiadó, Budapest, 462.

Klingelnberg, J. (2016). Fundamentals of Bevel Gears. In Bevel Gear (pp. 11-56). Springer Vieweg, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-43893-0_2

Litvin, F. L., & Fuentes, A. (2004). Gear geometry and applied theory. Cambridge University Press.

https://doi.org/10.1017/CBO9780511547126

Litvin, F. L. (1972). A fogaskerékkapcsolás elmélete. Műszaki Könyvkiadó.

Rohonyi V.(1980): Fogaskerékhajtások. Műszaki Könyvkiadó, Budapest.

Terplán Z. (1975). Gépelemek Iv., Kézirat, Tankönyvkiadó, Budapest, 220. [14] https://www.ebay.com/itm/7-5-Gleason-Ridg-Ac-Gear-Cutter-Head-No-30207009-24-Blade- /261313074965 [15] http://mansourfahmi.com/en

Marciniec, A., Pacana, J., Pisula, J. M., & Fudali, P. (2018). Comparative analysis of numerical methods for the determination of contact pattern of spiral bevel gears. Aircraft Engineering and Aerospace Technology, Vol. 90, No.2, 359-367.

https://doi.org/10.1108/AEAT-08-2016-0133

Álvarez, Á., Calleja, A., Ortega, N., & de Lacalle, L. (2018). Five-axis milling of large spiral bevel gears: toolpath definition, finishing, and shape errors. Metals, Vol. 8, No.5, 353.

https://doi.org/10.3390/met8050353

Tsiafis, I., Mamouri, P., & Kompogiannis, S. (2018, July). Design and manufacturing of spiral bevel gears using CNC milling machines. In IOP Conference Series: Materials Science and Engineering (Vol. 393, No. 1, p. 012066). IOP Publishing.

https://doi.org/10.1088/1757-899X/393/1/012066

Feng, L. Y., Tian, M. Y., Liu, C. H., Liu, T., & Ma, Z. H. (2011). An Auto-Design System of Gleason Spiral Bevel Gear. In Advanced Materials Research (Vol. 317, 62-65). Trans Tech Publications.

https://doi.org/10.4028/www.scientific.net/AMR.317-319.62

Garcia-Garcia, R., & Gonzalez-Palacios, M. A. (2018). Method for the geometric modeling and rapid prototyping of involute bevel gears. The International Journal of Advanced Manufacturing Technology, 98(1-4), 645-656.

https://doi.org/10.1007/s00170-018-2246-9

Li, J.B., Ma, H.J., Deng, X.Z., Zhang, H., Yang, J.J., Xu, K., Li, T.X., Xu, A.J. and Wang, H.L. (2017). An approach to realize the networked closed-loop manufacturing of spiral bevel gears. The International Journal of Advanced Manufacturing Technology, Vol. 89, No.5-8, 1469-1483.

https://doi.org/10.1007/s00170-016-9200-5

Marciniec, A., & Sobolewski, B. (2015). Modeling and simulation of bevel gearboxes in cad environment. Diagnostyka, 16.

Pisula, J., & Płocica, M. (2014). Methodology of designing the geometry of the bevel gear using numerical simulation to generate the teeth flank surfaces. acta mechanica et automatica, Vol.8, No.1, 5-8.

https://doi.org/10.2478/ama-2014-0001

Downloads

Published

2019-03-31

How to Cite

Sándor, B. (2019). Designing and Analysis of the TCA Parameters of a Bevel Gear Having Circular Tooth Direction in the Function of the Moment. Journal of Applied Science &Amp; Process Engineering, 6(1), 310–328. https://doi.org/10.33736/jaspe.1234.2019